Filter By

Invitations To Tender

Feasibility study of a space-based relativistic PNT system

All GNSS in operation at present are based on Newtonian physics and rely on global reference frames fixed to Earth. Relativistic effects are treated as deviations that need to be corrected for. Precision and stability over time of the reference frames is provided via ground stations and they are limited by the Earth’s dynamics (e.g. variations of the Earth’s rotation rate, plate tectonics,…

Collaborative Processing of Distributed Receivers of Opportunity for Jamming and Spoofing Mitigation

The fast evolution of the Internet of Things (IoT), commercial Cloud platforms, and the future 5G standards are boosting development of new applications and technologies in the PNT field. Devices are expected to be increasingly connected to Internet in the next few years, storage and processing of data in the Cloud is already a reality, with 5G expected to bring very soon higher data rates and…

Advanced Multi-Frequency Low-Cost High-Gain GNSS Antennas for next generation of Mass-Market Devices

Mass-market GNSS receivers, mostly installed in smartphones, use low cost antennas that need to be compatible with the communication antennas of these terminals. Typical antennas used in mobile phones are simple PIFAs (Planar Inverted-F Antennas) suitable for any constellation in L1 band, such as GPS/Galileo, GLONASS/Beidou. Their linear polarization (instead of circular) and low gain lead to…

Precise Timing for Indoor Small Cells

GNSS signals are widely used for time synchronization purposes in many different application sectors, including telecom, finance and energy. Telecom service providers, in particular, consider GNSS-based synchronization well adapted to macro-cells whereas alternative synchronization technologies (e.g. wire-based solutions like Precise Time Protocol) are deemed more suitable for indoor small cells,…

Antenna and Transponder Unit for Underwater PNT

Underwater wireless communications links have almost exclusively been implemented using acoustic systems. Optical links have proved impractical for many applications. Although underwater radio links were experimented in the pioneering days of radio, they did not meet the requirements of the time. Given modern operational requirements and digital communications technology, the time is now ripe for…

AI-enabled baseband algorithms for High Fidelity Measurements

Critical applications such as autonomous vehicles and machine control require high fidelity raw measurements in challenging environments. In spite of significant progress made in recent years, for those applications GNSS performance remains unsatisfactory in terms of reliability in challenging environments, therefore requiring improvement. The main challenges lie in handling transfer functions…

Machine-Learning to model GNSS systems

GNSS simulations are an important toolset supporting system engineering trade-offs and decisions. They are used to display and monitor key system performance indicators as well as study system behaviour, both through synthetic scenarios and real data replay. Industry and ESA currently use different tools to simulate GNSS systems, however often constrained to undertake only one of two different…