



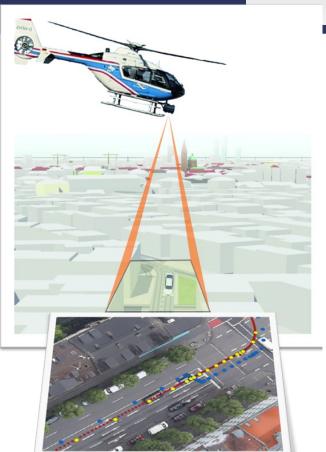


A Novel Solution To Validate GNSS Receiver For **Autonomous Driving (VaGAD)** 

# A NAVISP Element 2 Project

Paulo Mendes & Franz Kurz, 18th of January 2022

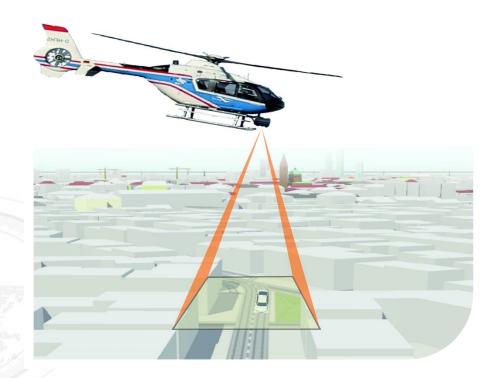



# Agenda





### Webinar agenda:


- NavCert & DLR EOC profiles
- VaGAD Project Context
- Certification & Validation
- VaGAD Method
- VaGAD Test Campaign
- VaGAD Analysis & Results
- Conclusions



# VaGAD Webinar







# NavCert Profile





Provides independent testing, validation and certification of GNSS components, products, solutions and services.

The NavCert GmbH was founded as a Joint Venture between TÜV Süd and OECON in 2006.

Since 2012 NavCert GmbH is a 100% subsidiary of the OECON Holding GmbH.

The <u>only laboratory in Europe</u> accredited by a national accreditation Authority in the domain of <u>GNSS</u>.

Notified Body (NB 2603) for European Electronic Tolling Service and Chair of expert groups EETS.

#### **Provides certification:**

- eCall first eCall type approval in Europe
- GNSS solutions, GNSS testbed systems (e.g., GATE), Digital Maps
- UAS
- EETS, ....



## NavCert Profile





Doutsche

#### Participates in national and EU projects (GNSS/AD/RAILWAY/NextGen-eCall)

- ACCURATE (EU)
- CLUG (EU)
- **GEARS (EU)**
- SAFE (EU)
- **GHOST HUNTER (National)**
- SynCoPark (National)
- **VEREDUS** (National)

Based in Braunschweig & Munich.

Member of DIN and ETSI standardization organisations and delegated expert at

DIN, CEN/CENELEC and ISO.









Anlage zur Akkreditierungsurkunde D-PL-17052-01-00 nach DIN EN ISO/IEC 17025:2018

Gültig ab: 13.08.2021 Ausstellungsdatum: 13.08.2021

Urkundeninhaber:

NavCert GmbH

Hermann-Blenk-Straße 22a, 38108 Braunschweig

Schwanthaler Straße 14, 80336 München

Polifungen in den Bereichen:

GNSS basierte Flächenmesssysteme, Geräte und Systeme zur Messung von geodätischen

Intelligente Transport Systeme - eSafety und eCall: Technische Prüfungen von bordeigenen eCall-Systemen, selbstständigen technischen Einheiten und Bautellen nach Verordnung (EU) 2017/79 (hier: Annex I, II, III, IV, V, VI, VII, VIII);

Prüfen und Messen innerhalb der Module A1, A2, B, C1, C2, F, F1, G des Europäischen elektronischen Mautdienstes und seiner technischen Komponenten (EEMD)

Dem Prüflaboratorium ist, ohne dass es einer vorherigen information und Zustimmung der DAkkS bedarf, die Anwendung der hier aufgeführten genormten oder ihnen gleichzusetzenden Prüfverfahren mit unterschiedlichen Ausgabeständen gestattet.

Das Prüflaboratorium verfügt über eine aktuelle Liste aller Prüfverfahren im flexiblen

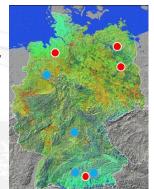
De Anforderungen as das Monagementaistem in die BIMEN ISCAEC LPGES sind in einer für Phällaboratories refesanten Sprache verfasst und steten Inspesant in Übereinstimmung mit den Arlanjalen der Dill FN ISO 9001

Die Unionale sanst Unionale sanlage glöt den Stand zum Zeitannitz des Ausstellungsdotums wieder. Der jeweils aktuelle Stand der Geltungsbereiches der Abweittlerung ist der Batenbank abbrecklierter Stellen der Beutraten Adweitiferungsstelle Grabi-(CABAS) as entretreen, https://www.doi.is.alg/content/datentent-akknotineter-ateller

verwendete Abkürzungen: siehe letzte Seite

Seite 1 von 5

# **DLR EOC Profile**






DLR – Earth Observation Center (EOC)

- Remote Sensing Technology Institute (IMF)
- German Remote Sensing Data Center (DFD)
- → @ German Aerospace Center (DLR)

7 sites in Germany Headquarter in Oberpfaffenhofen close to Munich





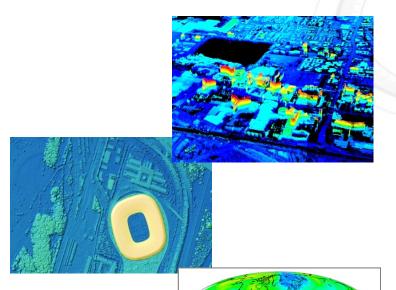
# **DLR EOC Profile**





#### DLR – Remote Sensing Technologies @ EOC

#### Synthetic Aperture Radar (SAR)


- Processors for Sentinel-1, TerraSAR-X, TanDEM-X, PAZ, Tandem-L, etc.
- Imaging geodesy
- 4D imaging: PSI, SAR tomography et al.
- SAR oceanography, maritime security

#### **Optical Imaging**

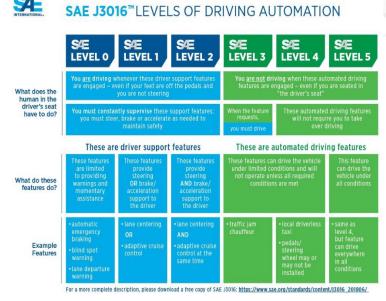
- Processors for Sentinel-2, EnMAP and DESIS
- CATENA: generic processing chain for satellite and airborne sensors
- 3D: dense stereo matching and object reconstruction, computer vision
- Hyperspectral methods: retrieval, unmixing, classification, fusion
- Atmospheric correction, ocean color, water quality
- Airborne applications/Traffic monitoring

#### **Atmospheric Spectrometry and Lidar**

- Processors for GOME-2, ADM, MERLIN, Sentinel 5p/4/5, etc.
- Spectrometry laboratory
- Scattering theory, radiative transfer, inversion methods








- The high-precision determination of absolute vehicle positions required for autonomous driving is a new and a considerable challenge for the automotive industry.
- Positioning functions in the automotive sector have been used for applications where positioning accuracy is not so stringent.
- Positioning functions have only been used as a commodity of convenience for basic functions such as navigation or for the provision of points of interest (Pol's).
- However, for vehicles with automated driving functions, specifically designed to reach the SAE-L3, and SAE-L4 position accuracy is critical.





- Human driver will be substituted incrementally with increasing levels of automation
  - → for SAE-L3, SAE-L4 and higher the position accuracy is a critical element
- The VaGAD project emerged from the need to address calibration, validation, and certification of GNSS receivers supporting SAE-L3, and SAE-L4 functions.
- The focus of the project lies on the calibration, validation and certification of the absolute positional accuracy







- Prove of evidence regarding the vehicle's required position accuracy is important for the functionality of the automated driving systems.
- The vehicle's absolute position can only be determined by using GNSS devices supported optionally by auxiliary sensors, e.g. INS, odometer.
- The prove of evidence regarding accuracy is done by using the same GNSS technology using a high-grade device.
- Tier's require an independent method for validation during development and production.
- OEMs are looking for an independent method to verify their GNSS specific Key Performance Indicators (KPIs) in the delivered products.





- An independent method for testing is important for certification
  - The accuracy assessment of GNSS devices uses the same working and test principles as the device under test, i.e. by using a high-grade GNSS receiver with an assumed higher accuracy and performance.
  - This approach tends to ignore the fact that by using the same working principles the reference as well as the test devices will suffer of the same underlying error problems.
- The real or intrinsic accuracy of GNSS receivers is unknown or quite difficult to estimate.
- An independent procedure to assess the accuracy of GNSS devices is highly desirable and necessary, particularly in GNSS-denied areas and in safety applications as in AD
- Certification is a quality stamp which assures that a product fulfils at least a minimum set of requirements from standard(s) or industry agreed requirements.





#### Product certification

- rises awareness,
- establishes consensus among manufactures, providers, users, and regulators,
- develops trust on the product,
- defines a state-of-art product.
- The VaGAD calibration and validation service is based on the comparison of measurement values delivered by a GNSS receiver with those obtained by a validated GNSS independent system.
- The VaGAD calibration and validation service allows the calibration and the validation of GNSS receivers for the automotive industry under real world conditions through the use of aerial images and GCP's data (e.g., satellites).





#### The VaGAD calibration and validation service provides

- a GNSS independent reference system and a reference trajectory without the same underlying errors as the device under test,
- a GNSS independent reference trajectory used in critical areas, e.g. urban canyons or other GNSS-denied environments,
- a new method for calibration, validation and certification of GNSS-based positioning systems and for classification in performance classes,
- three categories of accuracy levels, i.e., highway, urban or rural,
- and a valid test scheme with a test plan comprising
  - test method based on specifications or standards
  - including decision rules for pass-fail classification.








#### VaGAD Test Case requirements

needed

|        | •                                                                                          |
|--------|--------------------------------------------------------------------------------------------|
| Test T | rack Requirements                                                                          |
| R01    | Availability of sufficient 1) ground control and check points with high accuracy (derived  |
|        | from SAR satellite data or measured locally with GNSS receivers)                           |
| R02    | Availability of high-resolution LiDAR surface models of the road surface                   |
| R03    | Flight clearance for helicopter and flight corridors outside of airport control area, if   |
|        | possible                                                                                   |
| R04    | Visibility of test vehicle from the helicopter (except for tunnels and under bridges)      |
| R05    | Challenging test area for mobile GNSS receivers installed in the vehicles, i.e. multipath- |
|        | effects and effects due to poor reception                                                  |
| R06    | Coverage of different scenarios like urban roads (within the city surrounded by            |
|        | buildings), rural roads (outside the city centre with few buildings) and motorways         |
| R07    | Avoidance of noise pollution for residents                                                 |
| R08    | Measurements number according to test scenario (urban=625 2) @1Hz, rural=400 2)            |
|        | @1Hz and highway=230 <sup>2)</sup> @1Hz)                                                   |
| R09    | Avoidance of traffic jams <sup>3)</sup>                                                    |
| R10    | Availability LTE network coverage for use of the vehicle tracking tool in the helicopter   |
| R11    | Free waiting zones for the measuring vehicle, if synchronisation with helicopter is        |





Rural scenario

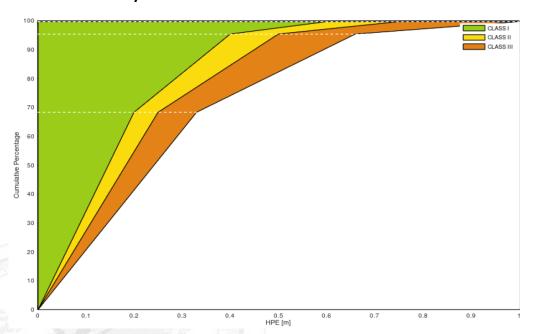


Urban scenario





#### Defined Test Cases in the VaGAD project


| Test Track                                               | k            | Reference<br>(Control)           | Track 1A                                       | Track 2A                                     | Track 2B                         | Track 3A                                                        | Track 3B                                                  | Track 3C                                                        | Track 3D                                                        | Track 3E                                                        |
|----------------------------------------------------------|--------------|----------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| Туре                                                     |              | Rural                            | Rural                                          | Highway                                      | Highway                          | Urban                                                           | Urban                                                     | Urban                                                           | Urban                                                           | Urban                                                           |
| Start                                                    | LAT:<br>LON: | N 47.997601<br>E 11.641396       | N 47.995260<br>E 11.650159                     | N 48.030568<br>E 11.634930                   | N 48.056165<br>E 11.598043       | N 48.094797<br>E 11.588305                                      | N 48.118735<br>E 11.558475                                | N 48.1358913<br>E 11.5513249                                    | N 48.1402914<br>E 11.5241176                                    | N 48.1426814<br>E 11.5678418                                    |
| End                                                      | LAT:<br>LON: | N 47.996135<br>E 11.655278       | N 48.030539<br>E 11.634944                     | N 48.056173<br>E 11.597982                   | N 48.094805<br>E 11.588295       | N 48.118041<br>E 11.558847                                      | N 48.135855<br>E 11.551282                                | N 48.1402970<br>E 11.5241099                                    | N 48.1473704<br>E 11.5518234                                    | N 48.1473737<br>E 11.5518265                                    |
| Length                                                   |              | 1 km                             | 4.5 km                                         | 5.3 km                                       | 4.6 km                           | 4.7 km                                                          | 2.4 km                                                    | 2.4 km                                                          | 2.8 km                                                          | 1.5 km                                                          |
| Sky view                                                 |              | Open sky                         | Limited sky                                    | Open sky<br>(mostly)                         | Open sky                         | Limited sky                                                     | Limited sky                                               | Limited sky                                                     | Limited sky                                                     | Limited sky                                                     |
| Physical<br>Environmen                                   | nt           | Fields                           | Forest                                         | Forest (distant) and fields                  | Fields (mostly).                 | Buildings, trench, small crossovers.                            | Buildings<br>(height ~30 m)                               | Buildings<br>(height ~20 m)                                     | Buildings<br>(height ~20 m)                                     | Buildings<br>(height ~20 m)                                     |
| Elevation<br>Mask (min)                                  |              | > 5°                             | ~40° - 70°                                     | > 10° - 20°                                  | >5° - 10°                        | ~30° - 80°                                                      | ~30° - 60°                                                | ~30° - 60°                                                      | ~30° - 60°                                                      | ~30° - 60°                                                      |
| Factors<br>Impacting to<br>GNSS signal<br>the test trace | ls in        | -/-                              | High absorption,<br>middle blockage<br>effects | Weak absorption,<br>weak blockage<br>effects | Weak multipath<br>effects        | Strong<br>multipath,<br>blockage, and<br>diffraction<br>effects | Middle multipath,<br>blockage, and<br>diffraction effects | Middle<br>multipath,<br>blockage, and<br>diffraction<br>effects | Middle<br>multipath,<br>blockage, and<br>diffraction<br>effects | Middle<br>multipath,<br>blockage, and<br>diffraction<br>effects |
| Standard<br>Reference <sup>2</sup> (                     | (s)          | CEN/EN 16803-1<br>ETSI 103 246-3 | CEN/EN 16803-1<br>ETSI 103 246-3               | CEN/EN 16803-1<br>ETSI 103 246-3             | CEN/EN 16803-1<br>ETSI 103 246-3 | CEN/EN 16803-1<br>ETSI 103 246-3                                | CEN/EN 16803-1<br>ETSI 103 246-3                          | CEN/EN 16803-1<br>ETSI 103 246-3                                | CEN/EN 16803-1<br>ETSI 103 246-3                                | CEN/EN 16803-1<br>ETSI 103 246-3                                |
| Velocity ran                                             | nge          | 0 – 30 km/h                      | 40 – 80 km/h                                   | 80 – 100 km/h                                | 80 – 120 km/h                    | 30 – 60 km/h                                                    | 30 – 60 km/h                                              | 30 – 60 km/h                                                    | 30 – 60 km/h                                                    | 30 – 60 km/h                                                    |
| -/-                                                      |              | -/-                              | -/-                                            | -/-                                          | -/-                              | -/-                                                             | -/-                                                       | -/-                                                             | -/-                                                             | -/-                                                             |

Test tracks/test case definition, physical and environmental characteristics





### Defined accuracy class levels and a certification mark



This follows the classification principles from the CEN/CENELEC and ETSI ESO's.





#### Defined accuracy class levels and Pass/Fail Criteria

#### **Accuracy Class Levels**

| Accuracy class Ecvels               | T                                     |          |           |  |  |  |  |  |  |
|-------------------------------------|---------------------------------------|----------|-----------|--|--|--|--|--|--|
| Accuracy Metrics                    | Position Error                        |          |           |  |  |  |  |  |  |
| ·                                   | Class I:                              | Class II | Class III |  |  |  |  |  |  |
| l                                   | Urban                                 | Rural    | Highway   |  |  |  |  |  |  |
|                                     | Maximum Horizontal Position Error [m] |          |           |  |  |  |  |  |  |
| HPE   $68.3^{th}$ percentile        | ≤ 0.20                                | ≤ 0.25   | ≤ 0.33    |  |  |  |  |  |  |
| HPE   95.4 <sup>th</sup> percentile | ≤ 0.40                                | ≤ 0.50   | ≤ 0.66    |  |  |  |  |  |  |
| HPE   99.7 <sup>th</sup> percentile | ≤ 0.60                                | ≤ 0.75   | ≤ 1.00    |  |  |  |  |  |  |
| Maximum Vertical Position Error [m] |                                       |          |           |  |  |  |  |  |  |
| VPE   68.3 <sup>th</sup> percentile | ≤ 1.00                                | ≤ 1.20   | ≤ 1.50    |  |  |  |  |  |  |
| VPE   $95.4^{th}$ percentile        | ≤ 2.00                                | ≤ 2.40   | ≤ 3.00    |  |  |  |  |  |  |
| VPE   $99.7^{th}$ percentile        | ≤ 3.00                                | ≤ 3.60   | ≤ 4.50    |  |  |  |  |  |  |



**Certification Mark** 

The  $95.4^{th}$  percentile is also used to defined **Pass/Fail criteria** in the context of a certification process.





### VaGAD working principle



**Aerial Imagery** 



**Ground Control Points** 



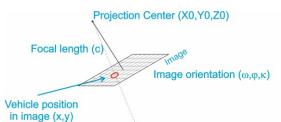
Digital Surface Model

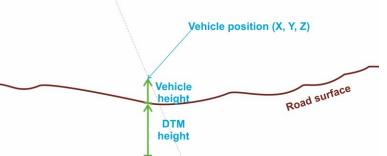


Vehicle GNSS Data





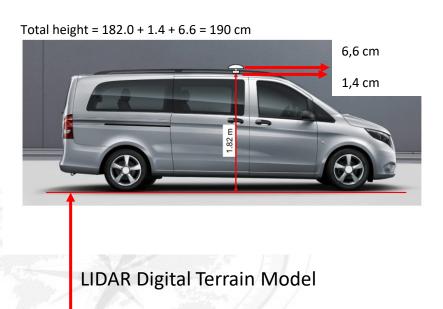

#### VaGAD working principle


- Aerial imagery can be used to determine exact positions of moving objects.
- Aerial images are acquired simultaneously above the reference vehicle from a flying platform.
- "Forward ray intersection" provides the vehicle position.
- Image 2D to real world 3D → height required.
- Height information gets derived from an external data source.

#### **Collinearity equation**

$$x = -c \frac{r_{11}(X - X_0) + r_{12}(Y - Y_0) + r_{13}(Z - Z_0)}{r_{13}(X - X_0) + r_{23}(Y - Y_0) + r_{23}(Z - Z_0)}$$

$$y = -c \frac{r_{12}(X - X_0) + r_{22}(Y - Y_0) + r_{23}(Z - Z_0)}{r_{13}(X - X_0) + r_{23}(Y - Y_0) + r_{33}(Z - Z_0)}$$





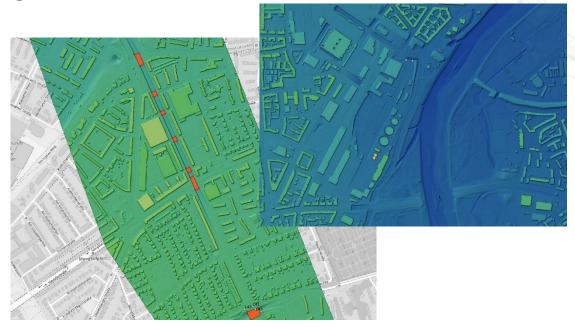





### **VaGAD** working principle – Height information






LIDAR Digital Terrain Model + LOD1 (red: errors at briges)





### **VaGAD** working principle – Height information

- LIDAR DTM from state of Bavaria+ LOD1 building model
  - ETRS89/DREF91, DHNN2016
- 4 pts/m²
- <10cm accuracy in Z</p>
- Errors at bridges (areas must be excluded from processing)

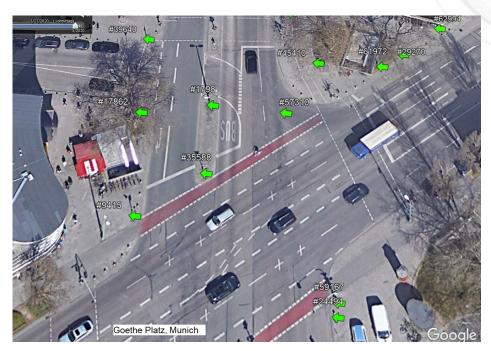






#### **Data preparation – Ground control and check points**

- Stationary GNSS measurements
  - 26 GCPs
  - 17 ChPts
  - $\Sigma$ 43 Pts.
- Difference to LIDAR DTM < 5cm</li>(!)
- Processing of SAR geodetic points from TerraSAR-X satellite data as optional ground control points

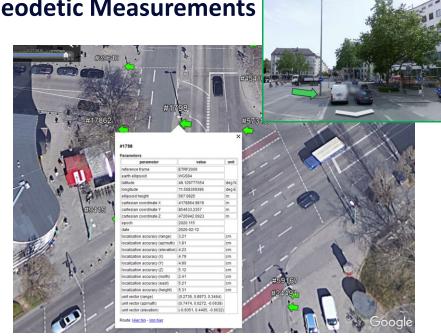

| Nr | UTM_X     | UTM_Y      | UTM_Z  | DTM    | dH    | remark          | SIGMA_X | SIGMA_Y | SIGMA_Z |
|----|-----------|------------|--------|--------|-------|-----------------|---------|---------|---------|
| 62 | 698032,52 | 5319276,11 | 644,67 | 644,69 | 0,02  |                 | 0,0103  | 0,0042  | 0,0094  |
| 61 | 698056,56 | 5319282,14 | 644,74 | 644,71 | -0,03 |                 | 0,0091  | 0,0043  | 0,0080  |
| 60 | 698062,60 | 5319284,01 | 644,64 | 644,6  | 0,02  | Road<br>surface | 0,0088  | 0,0041  | 0,0077  |
| 63 | 697669,26 | 5319334,86 | 643,67 | 643,72 | 0,05  | #nr sat.<15     | 0,0120  | 0,0058  | 0,0105  |
| 71 | 697181,76 | 5319412,74 | 645,10 | 645,1  | 0,01  | Road<br>surface | 0,0100  | 0,0057  | 0,0082  |
| 52 | 696903,95 | 5319954,04 | 641,85 | 641,85 | 0,00  | Road<br>surface | 0,0142  | 0,0095  | 0,0107  |
| 51 | 696689,07 | 5320777,18 | 636,14 | 636,00 | -0,14 | #nr sat.<15     | 0,0075  | 0,0044  | 0,0061  |
|    |           |            |        |        |       |                 |         |         |         |





#### **Ground Control Points From TerraSAR-X Geodetic Measurements**

- TerraSAR-X Staring Spotlight Mode
- Several hundred GCPs with an accuracy of 4-6 cm in X,Y and Z have been generated for the region around the test track
- The techniques allows the determination of the geodetic coordinates of the foot point of poles (and other corner reflectors)
- Poles can be recognized in airborne images by their black shadow line








**Ground Control Points From TerraSAR-X Geodetic Measurements** 

- Unfortunately, the VaGAD helicopter flights had to be performed on cloudy days with no shadows.
- As a result, the masts were practically invisible in the aerial images and the coordinates of the base points could not be assigned.
- GCPs obtained with traditional methods had to be used.







### Equipment and test architecture – 4k Camera System on EC135

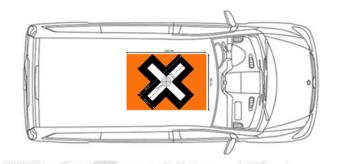


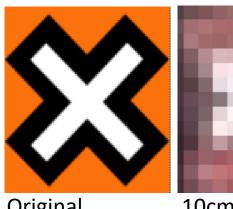
4k camera system on EC135:

Two cameras

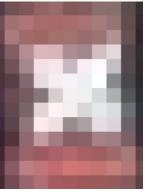
- 35mm
- 50mm focal length
- 1 fps, GSD (10cm resp. 7cm @ 500m)




Vehicle tracking hard- and software for helicopter pilots







### **Equipment and test architecture – reference vehicle**





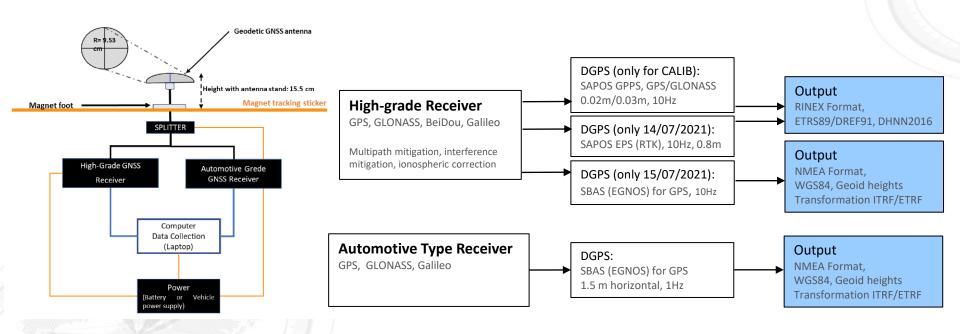






10cm GSD




7cm GSD

18.01.2022





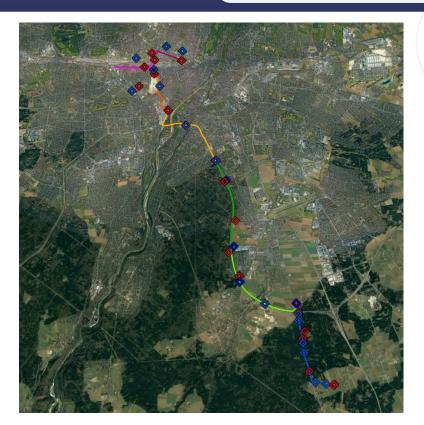
### Equipment and test architecture - GNSS equipment in reference vehicle







#### **Test Site**


Yellow/Orange/Red/Pink: Urban scenario

Green: Highway scenario

Blue: Rural scenario / Calibration track

Blue symbols: Check points

Red symbols: Ground control points







### **Test Campaign**

The test campaign was performed on the 13<sup>th</sup>, 14<sup>th</sup> and 15<sup>th</sup> of July 2021.

Analysis and results will be based only on data from 14<sup>th</sup> and 15<sup>th</sup> July

Two receivers were used, one with the capability to use RTK corrections (used on the 14<sup>th</sup>).

#### **Number of aerial images**

|            | Camera 35mm<br># **/total images | Camera 50mm<br># **/total images |
|------------|----------------------------------|----------------------------------|
| 13.07.2021 | /5441                            | /5441                            |
| 14.07.2021 | 3705/4331                        | 3130/4331                        |
| 15.07.2021 | 3123/3767                        | 2529/3767                        |

\*\*R04/R08/R09 fulfilled





### **Test Campaign**

Data completeness for each scenario and compliance to sample size

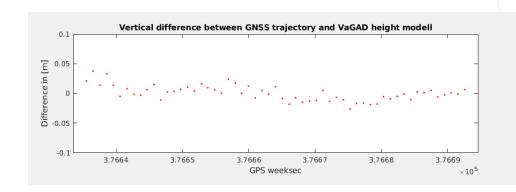
|             |         | Camera 35mm<br># **/total images | Camera 50mm<br># **/total images | R04/R08/R09<br>#required images |
|-------------|---------|----------------------------------|----------------------------------|---------------------------------|
| 14.07.2021  | CAL     | 0438/0500                        | 0401/0500                        | -                               |
| With RTK    | RURAL   | 0676/0817                        | 0486/0817                        | 400                             |
|             | HIGHWAY | 1476/1716                        | 1294/1716                        | 230                             |
|             | URBAN   | 1115/1298                        | 0949/1298                        | 625                             |
| 15.07.2021  | CAL     | 0388/0500                        | 0326/0500                        | -                               |
| Without RTK | RURAL   | 0642/0666                        | 0601/0666                        | 400                             |
|             | HIGHWAY | 0710/1032                        | 0543/1032                        | 230                             |
|             | URBAN   | 1383/1569                        | 1059/1569                        | 625                             |





### **Test Campaign**

Visualisation of data completeness for each scenario on the 15<sup>th</sup> of July



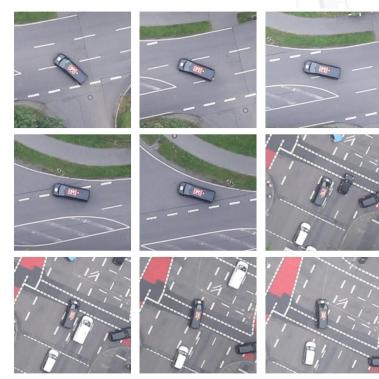





# Verification of DTM+vehicle heights

- Analysis at Calibration track
- Differences between
  GNSS positions (postprocessed) and
  DTM+vehicle heights are
  far better than specified
- No additional corrections of the DTM are required




|            |     | Mean (#57 images) | Std (#57 images) |  |  |
|------------|-----|-------------------|------------------|--|--|
| 15.07.2021 | CAL | 0.1 cm            | 1.2 cm           |  |  |





### VaGAD pattern position tracking in image sequences

- Pattern matching using NCC (normalized cross correlation)
- Search space limited by using approximated position
- Search for -180°/180° angle range
- Performance:
  - >95% of all positions are correct (altogether ~5000 positions)
  - Problems at occlusions and with wrong approximation
  - Manual check required







#### **VaGAD Bundle adjustment of image sequences**

VaGAD flight configuration not ideal for highly accurate position accuracies

- Helicopter stops, changes speed
- Mostly no parallel flight strips

All images from 14/07/21 and 15/07/21 were adjusted in six image blocks

4k aerial sensor latency\*\* was estimated separately: 0.003 s

|                           | Tie points |          |             | Groun   | Ground control |         |         | Image position and attitude |              |                |                   |                   |                   |
|---------------------------|------------|----------|-------------|---------|----------------|---------|---------|-----------------------------|--------------|----------------|-------------------|-------------------|-------------------|
| Track                     | #images    | #tie pts | #tie coords | #GPSIMU | #gcps          | #coords | #chkpts | $RMS_{\omega}$              | $RMS_{\phi}$ | $RMS_{\kappa}$ | RMS <sub>x0</sub> | RMS <sub>Y0</sub> | RMS <sub>z0</sub> |
| CALIB                     | 690        | 19746    | 2.18e06     | 4416    | 3              | 138     | 2       | 0.004°                      | 0.004°       | 0.005°         | 0.02m             | 0.02m             | 0.01m             |
| RURAL                     | 1412       | 39530    | 2.45e06     | 8472    | 7              | 197     | 4       | 0.004°                      | 0.004°       | 0.005°         | 0.02m             | 0.02m             | 0.02m             |
| HIGH <sub>14/07/21</sub>  | 964        | 72439    | 2.20e06     | 5784    | 9              | 87      | 6       | 0.004°                      | 0.004°       | 0.005°         | 0.03m             | 0.03m             | 0.02m             |
| HIGH <sub>15/07/21</sub>  | 485        | 34158    | 0.58e06     | 2910    | 7              | 82      | 6       | 0.005°                      | 0.005°       | 0.007°         | 0.03m             | 0.04m             | 0.02m             |
| URBAN <sub>14/07/21</sub> | 2376*      | 96356    | 2.30e06     | 14256   | 11             | 122     | 4       | 0.004°                      | 0.004°       | 0.005°         | 0.03m             | 0.03m             | 0.01m             |
| URBAN <sub>15/07/21</sub> | 2589*      | 69866    | 1.90e06     | 15534   | 11             | 134     | 4       | 0.004°                      | 0.004°       | 0.006°         | 0.03m             | 0.03m             | 0.01m             |

<sup>\*\*</sup>Sensor latency: time stamp of aerial image – real time of acquisition

<sup>\*,</sup> With additional images





### VaGAD Positional accuracy of image sequences: Rural/Motorway

- Images georeferenced with 19 GCP (only GNSS)
- Accuracy checked with 11 check points (only GNSS)
- RMSX 0.064 m RMSY 0.056 m RMSZ 0.109 m

| Nr  | X          | Υ           | Z       | dX     | dY     | dZ     |
|-----|------------|-------------|---------|--------|--------|--------|
| 61  | 698056.570 | 5319282.144 | 644.720 | 0.010  | 0.004  | -0.020 |
| 63  | 697669.322 | 5319334.984 | 643.479 | 0.062  | 0.128  | -0.191 |
| 21  | 696491.259 | 5322581.868 | 628.103 | -0.033 | 0.035  | -0.077 |
| 81  | 696419.975 | 5323056.976 | 619.791 | -0.009 | -0.042 | 0.041  |
| 31  | 696769.333 | 5321759.353 | 627.779 | 0.060  | -0.037 | -0.001 |
| 52  | 696903.901 | 5319953.954 | 641.731 | -0.045 | -0.090 | -0.119 |
| 12  | 694919.594 | 5323092.833 | 624.708 | -0.028 | -0.017 | 0.078  |
| 93  | 693758.273 | 5324159.548 | 622.028 | 0.064  | -0.013 | -0.022 |
| 101 | 693730.669 | 5324412.951 | 620.424 | 0.107  | -0.007 | 0.134  |
| 112 | 693504.346 | 5325845.676 | 608.156 | -0.037 | 0.029  | 0.156  |
| 132 | 693142.579 | 5329020.281 | 601.187 | 0.006  | -0.054 | 0.177  |



Blue: chkpt Red: gcp

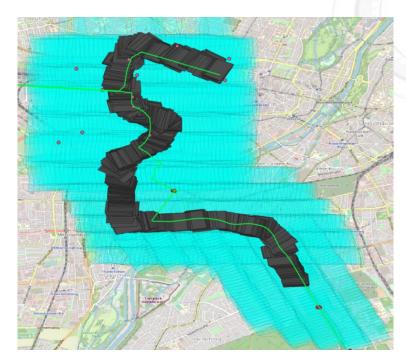




### **VaGAD Positional accuracy of image sequences: Urban**

- Images georeferenced with 7 GCP (only GNSS)
- Accuracy checked with 4 check points (only GNSS)
- RMSX 0.075 m RMSY 0.069 m RMSZ 0.096 m

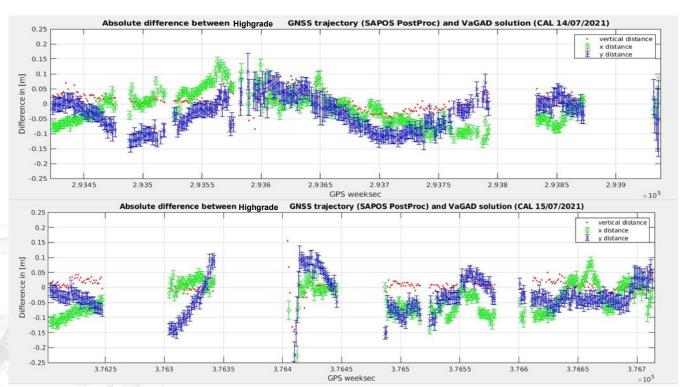
| Nr    | X          | Υ           | Z       | dX      | dY     | dZ      |
|-------|------------|-------------|---------|---------|--------|---------|
| 161   | 690385.374 | 5332672.123 | 565.262 | 0.011m  | 0.019m | 0.072m  |
| 10018 | 689992.667 | 5333927.174 | 567.728 | -0.058m | 0.061m | -0.125m |
| 10010 | 689234.283 | 5334942.164 | 570.577 | 0.110m  | 0.099m | -0.075m |
| 10021 | 689697.537 | 5334792.340 | 565.704 | 0.084m  | 0.073m | -0.103m |
| RMS   |            |             |         | 0.075m  | 0.069m | 0.096m  |


18.01.2022





# VaGAD Positional accuracy of image sequences: Urban


- Track changed short-term due to construction zones in the city
- GNSS control points were not covered by the image sequences
- To avoid additional GNSS measurements, aerial images from a regular strip configuration (cyan footprints) were added to the image sequences (black footprints)
- All control points were then covered







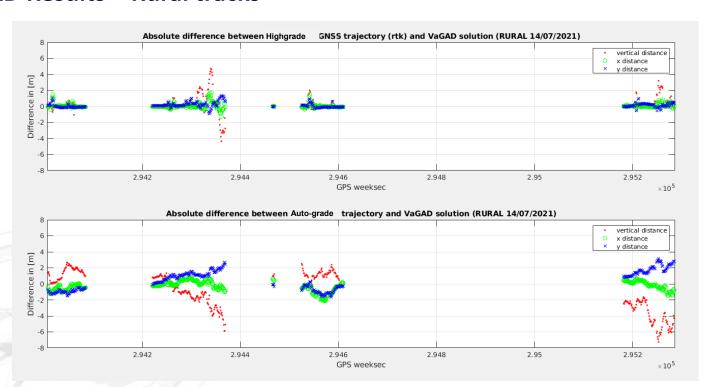
#### **VaGAD Results – Calibration tracks**







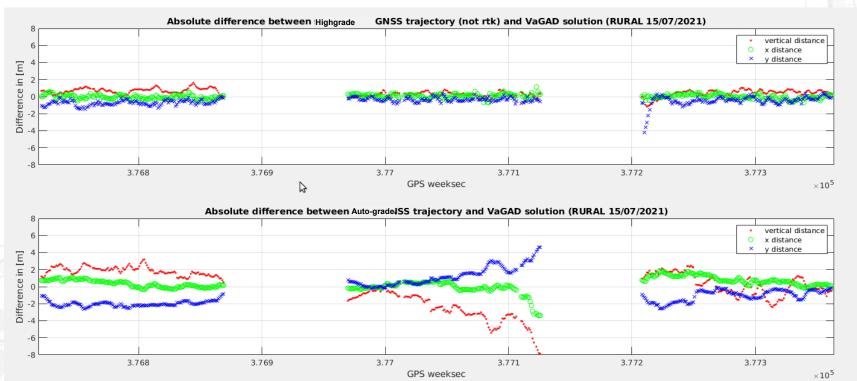
#### **VaGAD Results – Calibration tracks**


| Device/Track | Date       | #pts | $RMS_x$ | $RMS_Y$ | $p_{	extit{DIST}}^{	ext{ 68.3\%}}$ | $p_{	extit{DIST}}^{	ext{95.4}\%}$ | $p_{\scriptscriptstyle DIST}^{-99.7\%}$ |
|--------------|------------|------|---------|---------|------------------------------------|-----------------------------------|-----------------------------------------|
| High-grade   | 14.07.2021 | 360  | 0.06    | 0.06    | 0.09                               | 0.12                              | 0.15                                    |
| High-grade   | 15.07.2021 | 302  | 0.06    | 0.06    | 0.09                               | 0.13                              | 0.17                                    |

In meter






#### VaGAD Results – Rural tracks







#### **VaGAD Results – Rural tracks**







#### Test Campaign on the 14th of July 2021

Automotive type receiver versus high-grade-RTK receiver



- VaGAD Solution
- Automotive Type
- High-grade-RTK Type


18.01.2022





#### **Test Campaign on the 14<sup>th</sup> of July 2021**

Automotive type receiver versus high-grade-RTK receiver



- VaGAD Solution
- High-grade-RTK Type





#### Test Campaign on the 14th of July 2021

Automotive type receiver versus high-grade-RTK receiver



- VaGAD Solution
- High-grade-RTK Type





#### Test Campaign on the 14th of July 2021

Automotive type receiver versus high-grade-RTK receiver



- VaGAD Solution
- High-grade-RTK Type

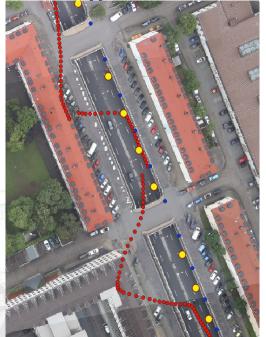




#### Test Campaign on the 14th of July 2021

Automotive type receiver versus high-grade-RTK receiver




- VaGAD Solution
- High-grade-RTK Type





#### Test Campaign on the 15<sup>th</sup> of July 2021

Automotive type receiver versus high-grade receiver without RTK





- VaGAD Solution
- Automotive Type
- High-grade Type

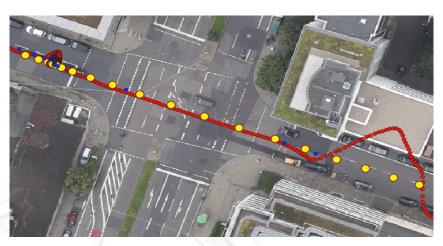




#### Test Campaign on the 15<sup>th</sup> of July 2021

Automotive type receiver versus high-grade receiver without RTK




- VaGAD Solution
- Automotive Type
- High-grade Type





#### Test Campaign on the 15th of July 2021

Automotive type receiver versus high-grade receiver without RTK



- VaGAD Solution
- Automotive Type
- High-grade Type







| Track<br>Case/Device | Test Date  | Measurement samples used | RMS <sub>X</sub> [m] | $RMS_{\gamma}[m]$ | $\mu_{HPE}$ [m] | $\sigma_{HPE}\left[\mathrm{m} ight]$ | $\mu_{VPE}\left[\mathbf{m}\right]$ | $\sigma_{VPE}[\mathrm{m}]$ |
|----------------------|------------|--------------------------|----------------------|-------------------|-----------------|--------------------------------------|------------------------------------|----------------------------|
| Rural                |            |                          |                      |                   |                 |                                      |                                    |                            |
| High-Grade           | 14.07.2021 | 408                      | 0.34                 | 0.34              | 0.33            | 0.35                                 | 0.28                               | 0.98                       |
| High-Grade           | 15.07.2021 | 442                      | 0.25                 | 0.67              | 0.60            | 0.39                                 | 0.45                               | 0.39                       |
| Automotive-Grade     | 14.07.2021 | 408                      | 0.69                 | 1.31              | 1.31            | 0.69                                 | -0.92                              | 2.35                       |
| Automotive-Grade     | 15.07.2021 | 442                      | 0.78                 | 1.67              | 1.61            | 0.90                                 | -0.14                              | 2.20                       |
| Highway              |            |                          |                      |                   |                 |                                      |                                    |                            |
| High-Grade           | 14.07.2021 | 637                      | 0.11                 | 0.17              | 0.18            | 0.09                                 | 0.06                               | 0.05                       |
| High-Grade           | 15.07.2021 | 437                      | 0.21                 | 0.30              | 0.34            | 0.16                                 | 0.03                               | 0.24                       |
| Automotive-Grade     | 14.07.2021 | 637                      | 0.29                 | 0.44              | 0.47            | 0.25                                 | -0.41                              | 1.37                       |
| Automotive-Grade     | 15.07.2021 | 437                      | 0.76                 | 0.87              | 0.98            | 0.61                                 | -2.21                              | 0.88                       |
| Urban                |            |                          |                      |                   |                 |                                      |                                    |                            |
| High-Grade           | 14.07.2021 | 736                      | 0.35                 | 0.45              | 0.34            | 0.46                                 | 0.12                               | 1.34                       |
| High-Grade           | 15.07.2021 | 912                      | 2.07                 | 2.28              | 1.61            | 2.87                                 | 1.61                               | 2.62                       |
| Automotive-Grade     | 14.07.2021 | 733                      | 0.76                 | 1.09              | 1.09            | 0.76                                 | -0.38                              | 2.06                       |
| Automotive-Grade     | 15.07.2021 | 912                      | 0.55                 | 1.13              | 1.04            | 0.73                                 | -2.04                              | 2.62                       |





| Track<br>Case/Device | Test Date  | Measurement samples used | $p_{HPE}^{68.3th}$ [m] | $p_{HPE}^{95.4th}$ [m] | $p_{HPE}^{99.7th}$ [m] | $p_{VPE}^{68.3th}[\mathrm{m}]$ | $p_{VPE}^{95.4th}[\mathrm{m}]$ | $p_{VPE}^{99.7th}[\mathrm{m}]$ |
|----------------------|------------|--------------------------|------------------------|------------------------|------------------------|--------------------------------|--------------------------------|--------------------------------|
| Rural                |            |                          |                        |                        |                        |                                |                                |                                |
| High-Grade           | 14.07.2021 | 408                      | 0.33                   | 1.24                   | 1.81                   | 0.25                           | 2.76                           | 4.60                           |
| High-Grade           | 15.07.2021 | 442                      | 0.30                   | 1.20                   | 3.71                   | 0.68                           | 1.06                           | 1.45                           |
| Automotive-Grade     | 14.07.2021 | 408                      | 1.56                   | 2.75                   | 3.07                   | 2.22                           | 5.65                           | 6.90                           |
| Automotive-Grade     | 15.07.2021 | 442                      | 2.12                   | 2.90                   | 5.73                   | 2.08                           | 4.71                           | 7.79                           |
| Highway              |            |                          |                        |                        |                        |                                |                                |                                |
| High-Grade           | 14.07.2021 | 637                      | 0.21                   | 0.34                   | 0.62                   | 0.07                           | 0.11                           | 0.37                           |
| High-Grade           | 15.07.2021 | 437                      | 0.41                   | 0.60                   | 1.05                   | 0.24                           | 0.47                           | 0.83                           |
| Automotive-Grade     | 14.07.2021 | 637                      | 0.60                   | 0.90                   | 1.09                   | 1.27                           | 2.97                           | 3.32                           |
| Automotive-Grade     | 15.07.2021 | 437                      | 1.25                   | 1.79                   | 3.96                   | 2.63                           | 3.94                           | 4.45                           |
| Urban                |            |                          |                        |                        |                        |                                |                                |                                |
| High-Grade           | 14.07.2021 | 736                      | 0.29                   | 0.86                   | 4.74                   | 0.06                           | 1.26                           | 16.75                          |
| High-Grade           | 15.07.2021 | 912                      | 1.51                   | 4.33                   | 26.46                  | 1.90                           | 5.90                           | 20.07                          |
| Automotive-Grade     | 14.07.2021 | 733                      | 1.18                   | 2.23                   | 3.48                   | 2.30                           | 4.01                           | 6.39                           |
| Automotive-Grade     | 15.07.2021 | 912                      | 1.21                   | 2.48                   | 5.82                   | 3.90                           | 5.75                           | 6.41                           |





| Test Case 1: Highway                                                                 |   |         |
|--------------------------------------------------------------------------------------|---|---------|
| Recertification: N/A                                                                 |   |         |
| Horizontal Position Error (HPE) ≤ 0.66 m                                             | P | 0.47 m  |
| The 95.4th percentile of the cumulative distribution of the HPE $\leq 0.66~\text{m}$ | F | 0.90 m  |
| Vertical Position Error (VPE) ≤ 3.0 m                                                | P | -0.41 m |
| The 95.4th percentile of the cumulative distribution of the VPE ≤ 3.0 m              | Р | 2.97 m  |
| Class III                                                                            | F | -/-     |
| Accuracy Analysis                                                                    |   |         |
| Test Case 2: Rural                                                                   |   |         |
| Recertification: N/A                                                                 |   |         |
| <b>Horizontal Position Error</b> (HPE) ≤ 0.50 m                                      | F | 1.31 m  |
| The 95.4th percentile of the cumulative distribution of the HPE $\leq$ 0.50 m        | F | 2.75 m  |
| Vertical Position Error (VPE) ≤ 2.4 m                                                | P | -0.92 m |
| The 95.4th percentile of the cumulative distribution of the VPE $\leq$ 2.4 m         | F | 5.65 m  |
| Class II                                                                             | F | -/-     |
| Accuracy Analysis                                                                    |   |         |
| Test Case 3: Urban                                                                   |   |         |
| Recertification: N/A                                                                 |   |         |
| Horizontal Position Error (HPE) ≤ 0.40 m                                             | F | 1.10 m  |
| The 95.4th percentile of the cumulative distribution of the HPE $\leq$ 0.40 m        | F | 2.23 m  |
| Vertical Position Error (VPE) ≤ 2.0 m                                                | P | -0.38 m |
| The 95.4th percentile of the cumulative distribution of the VPE ≤ 2.0 m              | F | 4.01 m  |
| Class I                                                                              | F | -/-     |
|                                                                                      |   |         |

#### **Automotive Type Receiver**

No Certification Mark Possible!





| Test Case 1: Highway                                                          |    |        |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|----|--------|--|--|--|--|--|--|
| Recertification: N/A                                                          |    |        |  |  |  |  |  |  |
| <b>Horizontal Position Error</b> (HPE) ≤ 0.66 m                               | P  | 0.18 m |  |  |  |  |  |  |
| The 95.4th percentile of the cumulative distribution of the HPE $\leq$ 0.66 m | P  | 0.34 m |  |  |  |  |  |  |
| <b>Vertical Position Error</b> (VPE) ≤ 3.0 m                                  | P  | 0.06 m |  |  |  |  |  |  |
| The 95.4th percentile of the cumulative distribution                          | P  | 0.11 m |  |  |  |  |  |  |
| of the VPE ≤ 3.0 m<br>Class III                                               | Р  | -/-    |  |  |  |  |  |  |
| Accuracy Analysis                                                             |    |        |  |  |  |  |  |  |
| Test Case 2: Rural                                                            |    |        |  |  |  |  |  |  |
| Recertification: N/A                                                          |    |        |  |  |  |  |  |  |
| Horizontal Position Error (HPE) ≤ 0.50 m                                      | P  | 0.33 m |  |  |  |  |  |  |
| The 95.4th percentile of the cumulative distribution of the HPE $\leq$ 0.50 m | F  | 1.27 m |  |  |  |  |  |  |
| Vertical Position Error (VPE) $\leq 2.4 \text{ m}$                            | P  | 0.28 m |  |  |  |  |  |  |
| The 95.4th percentile of the cumulative distribution of the VPE < 2.4 m       | F  | 2.76 m |  |  |  |  |  |  |
| Class II                                                                      | Ţ. | -/-    |  |  |  |  |  |  |
| Accuracy Analysis                                                             |    |        |  |  |  |  |  |  |
| Test Case 3: Urban                                                            |    |        |  |  |  |  |  |  |
| Recertification: N/A                                                          |    |        |  |  |  |  |  |  |
| <b>Horizontal Position Error</b> (HPE) ≤ 0.40 m                               | P  | 0.34 m |  |  |  |  |  |  |
| The 95.4th percentile of the cumulative distribution of the HPE $\leq$ 0.40 m | F  | 0.87 m |  |  |  |  |  |  |
| Vertical Position Error (VPE) ≤ 2.0 m                                         | P  | 0.12 m |  |  |  |  |  |  |
| The 95.4th percentile of the cumulative distribution of the VPE < 2.0 m       | Р  | 1.26 m |  |  |  |  |  |  |
| Class I                                                                       |    | -/-    |  |  |  |  |  |  |

#### High-Grade Receiver RTK

Certification Mark Possible: Highway!

### Conclusions





#### **VaGAD Method**

- For the assessment of GNSS devices the same procedures and equipment is used as for operation leading to the same underlying error problems (multipath, shadowing, ... ).
- Within this project a novel testing method independent of GNSS working principles was developed.
- The VaGAD method is based on tracking and highly accurate positioning of a test vehicle equipped with GNSS receivers using georeferenced aerial imagery.
- Test campaigns where carried out to test the method and evaluate the results.
- Assessment of two types of GNSS devices (automotive-type and an high-grade GNSS receivers) was conducted in the city of Munich and its surroundings.
- The analysis and results of using aerial imagery show that this method can be used as an independent tool for calibration, validation and certification of GNSS devices in real-word environments, e.g., in the highway, rural and urban scenarios.

© NavCert GmbH

### Conclusions





#### **VaGAD Method**

- The observed performance of both receivers is within the expected errors range.
- Even in GNSS denied environments, where GNSS receivers show deviations and gaps the VaGAD method proved to be reliable and resilient.
- It was shown that the positioning using aerial imagery as an independent in-situ method has reached an accuracy of  $\sim 10-20~\mathrm{cm}$  necessary to certify GNSS receivers aiming at high accuracy performance levels.
- Therefore the VaGAD method is suitable for GNSS DUT calibration, validation and certification activities.

© NavCert GmbH

### Conclusions





#### **Commercialization and Dissemination**

- The VaGAD is the result and cross-fertilisation between several PNT technologies, applied to certification, validation and testing offered as a service.
- The VaGAD method is mature and can respond to the needs of the PNT market.
   Therefore, as a service it is ready to be explored commercial.
- Commercialization agreement between DLR and NavCert.
- The service has the following advantages:
  - Provision of reference data for GNSS based receiver in the scope of automated driving
  - Provide guidance how a GNSS receiver may be validated even in critical scenarios
  - Provide accurate reference data in real world scenarios Rural/Highway/Urban
- We will share the key benefits of the new service with our established network in the automotive industry and participate in exhibitions, and congresses.







18.01.2022