

Snapshot RTK cloud-based solution

ESA-NAVISP2-AlboraSRTK

Albora Technologies Limited

- Company background
- Project background and objectives
- Product performance
- Test campaign results
- Conclusions

Company background

Albora Technologies Limited

Vision

Provide high-accuracy geolocation to everyone, everywhere

Mission

Softwarize to disrupt geolocation technology from device-centric to information-centric for mass-market applications

Us

Experts in distributed systems and GNSS.

LONDON - BARCELONA

Albora's cloud/edge platform

Scalable, ubiquitous, interoperable and extensible

Albora's approach

- Software-based
- Ubiquitous
- User-friendly (HW-agnostic + Plug & Play service)
- Affordable SaaS model

Ideal approach for the mass-market

Albora Cloud Positioning Services

Augment the capabilities of hardware devices with Albora's cloud-platform

Relevant use cases for high-accuracy location services

Improved geolocation data to widen location-based services value proposition

Micro-mobility

- Geofencing for parking in authorized areas
- Improve fleet management
- Improve user experience

Critical infrastructure

- Location of sensitive assets
- Regulation compliance.
- Safety.

Industry 4.0

- Soft-indoor geolocation.
- Geo-fencing
- Logistics support.

Albora Technologies Limited

- Company background
- Project background and objectives
- Product performance
- Test campaign results
- Conclusions

Project background and objectives

Background

AlbaSRTK

The product is a **cloud-based snapshot GNSS solution** that provides high accuracy solutions (1 cm CEP).

Key Features of **SRTK** technology:

- High accuracy.
- Low power streamlined receiver.
- Cloud-based, software-centric architecture.

Project background and objectives

Development objectives

Low power receiver with high accuracy capabilities:

- L1 support
- Ultra low power mode
- RTK solutions
- Low bandwidth (<200KB)

High-precision GNSS snapshot processing with RTK:

- GNSS data corrections and products centralized
- Scalable module-based algorithms and features
- High accuracy solutions

Test campaign and validation consolidation:

- Validating the end-to-end technology in relevant environments.
- Benchmarking against COTS
- SRTK technology trade-offs and KPI assessment

Albora Technologies Limited

- Company background
- Project background and objectives
- Product performance
- Test campaign results
- Conclusions

Product performance

Evolution

Heritage product

Snapshot	100 ms
Bands	L1/G1
Signals	Galileo E1C, GPS L1CA, BeiDou B1C, Glonass L1OF
Horizontal accuracy	2.5 m CEP
Time-to-first-fix	10 second
Integrity	~
Antijamming	~
RTK enabled	×
Real time GPS LNAV bits	×

Product at the end of the activity

Snapshot	20 ms
Bands	L1
Signals	Galileo E1C, GPS L1CA
Horizontal accuracy	1 cm CEP
Time-to-first-fix	5 second
Integrity	~
Antijamming	~
RTK enabled	~
Real time GPS LNAV bits	~

Product performance

SnapTwo receiver

- Ultra low power mode
- Streamlined receiver
- Credit card form factor
- Low bandwidth
- Dual band: L1 and L5 ready

High accuracy

- Open sky static conditions
- Near baselines (<5 Km)
 - RTK Fix rate > 90 %
 - Horizontal CEP < 1 cm
- Medium baselines (<15 Km)
 - o RTK Fix rate > 60 %
 - Horizontal CEP < 10 cm

Albora Technologies Limited

- Company background
- Project background and objectives
- Product performance
- Test campaign results
- Conclusions

Controlled environment

- SnapTwo connected to geodetic antenna via splitter
- Static, open sky conditions
- Four different baselines considered
 - Zero baseline
 - Near baseline (<5Km)
 - Medium baselines at two different locations (<15Km)
- KPIs:
 - Snapshot duration
 - Fix Rate
 - Sampling frequency and bandwidth
- Energy consumption characterization

Controlled environment

- Open sky environment
- KPIs assessment
- Best configuration selection
- Geodetic antenna

		time (ms)		
TTFF (s) for 20 ms	Baseline	20		
20 ms		Fix Rate (%)	H. CEP [cm]	
5	Medium (TEDD)	62	2.4	
	Medium (STRA)	82	2.4	
	Near	90	0.6	
	Zero	94	0.2	

a) Zero baseline

c) Medium baseline (STRA)

d) Medium baseline (TEDD)

Energy consumption

- Capture: ~19mWh / snapshot
- ULPM mode: steady consumption of 6.5mWh (1.3mA @ 5V)

SnapTwo	Capacity	Autonomy - 6 snapshots per day	
configuration	[mAh]	Snapshots	Battery life
20 ms	500	46	7.5 days
	2000	187	31 days

Urban environment and benchmarking

- SnapTwo connected to patch or small factor antenna
- Three different urban scenarios:
 - o Soft
 - Mild
 - Challenging
- Ground truth with COTS receiver
- Best configuration using 20 ms signal
- Benchmarking against two COTS
- KPIs:
 - Fix Rate
 - Horizontal accuracy

Soft Urban environment

- Patch and small factor antenna
- Benchmarking

		Horizontal		
Device Fix rate	Fix rate	CEP [m]	95% [m]	RMS [m]
SnapTwo	84%	0.014	4.096	1.496
COTS1	ı	3.647	6.666	4.222
COTS2	-	7.135	11.984	7.882

a) SnapTwo receiver

b) COTS2 receiver

Mild Urban environment

- Patch and small factor antenna
- Benchmarking

		Horizontal		
Device Fix r	Fix rate	CEP [m]	95% [m]	RMS [m]
SnapTwo	45%	0.768	9.433	3.791
COTS1	ı	6.163	8.608	6.459
COTS2	ı	8.293	17.661	9.624

a) SnapTwo receiver

b) COTS1 receiver

Challenging Urban environment

- Patch and small factor antenna
- Benchmarking

Floor		Horizontal		
Device	Float rate	CEP [m]	95% [m]	RMS [m]
SnapTwo	100%	2.922	8.650	4.085
COTS1	-	8.368	10.802	8.597
COTS2	-	6.501	15.143	7.947

a) SnapTwo receiver

b) COTS2 receiver

Albora Technologies Limited

- Company background
- Project background and objectives
- Product performance
- Test campaign results
- Conclusions

Conclusions

Albora Technologies Limited

Conclusion

- Development objectives achieved
 - High accuracy positioning
 - Streamlined receiver
 - Low power solution
 - Cloud-based, software-centric
- Test campaign
 - Controlled environment testing
 - Different baselines tested
 - 90% RTK fix-rate obtained with 20 ms signal
 - CEP 1 cm and TTFF of 5 seconds
 - Urban environment testing and benchmarking
 - Soft-urban
 - Over 80% RTK Fix-rate, CEP < 10cm
 - Mild-urban
 - 45% RTK Fix-rate, CEP < 1 m
 - SRTK outperform COTS receiver in all scenarios

Future work

- Expanding L1 band signal support with more signals
- Adding L2/L5 band support
- Enhancing algorithms for challenging conditions
- Selecting a more suitable antenna that minimises multipath effects
- Revision and optimization of SnapTwo Hardware

Q&A

Albora Technologies Limited

Contact Us

Albora Technologies
Limited

info@albora.io

http://www.albora.io/

© 2023 Albora Technologies Limited. All rights reserved.