

NAVISP-EI1-011 PNT Resilient, Trustworthy, Ubiquitous Time Transfer

Final Presentation

Agenda

- Project Overview
- Technology Review and Use Case Selection
 - Innovative Hybrid Timing Solution
- Prototyping and Timing Evaluation
- Study Conclusions
- Recommendations
- Q&A

Aim of the Presentation:

- Summarise study results
- Present preliminary recommendations

Project Overview [LM]

Objectives of the Study

"To develop an innovative hybrid solution of time dissemination, transfer and synchronisation to provide ubiquitous, accurate, secure and reliable timing services that are cost-effective for future commercial and mission-critical applications"

- Objective breakdown:
 - **Identify Use Cases** for which ubiquitous, accurate, secure and reliable time transfer and synchronisation will be required
 - Identify and assess potential candidate terrestrial or space based technologies that can complement GNSS time transfer for each of the use cases
 - Develop hybridised solutions for each of the use cases
 - Design and develop an evaluation platform to assess the potential candidate hybridised solutions
 - Identify the most promising technologies and to produce a technology Development Roadmap and TTM plan based on the gap analysis

Project Team

- Telespazio UK (TPZ-UK) is the Prime contractor
 - Responsible for the overall project and technical delivery
 - Comprehensive navigation and timing experience
 - spanning engineering, simulation, service provision and user applications
- Supported technically by
 - Chronos Technology Ltd (CTL)
 - A leading international authority on resilient synchronisation and timing solutions
 - · Serving numerous market sectors
 - Telecoms, Finance, Energy, Broadcasting, Defence, Security, Scientific, Enterprise IT

Work Logic

- The work was split into 4 key tasks:
 - Task 1 High Level Definition and Technology Assessment use cases and technology identification and analysis
 - · Review of the existing and emerging terrestrial and space-based technologies for time Synchronisation
 - Define the use case for further study
 - Task 2 Design of the Evaluation Platform
 - Design a demonstration plan and an evaluation platform
 - Carry out a SWOT analysis, conduct an evaluation of TTM, CAPEX and OPEX for selected technologies used for the demonstration.
 - Task 3 Development of the Evaluation Platform and Demonstration
 - Develop the evaluation platform including all hardware, software and measurement utilities
 - Test execution and data collection
 - Task 4 Technology Evaluation and Recommendations
 - Analysis of collected data during the testing
 - Perform a gap analysis, TTM, potential upgrade cost, Regulatory and standardisation

Technology Review [DJ]

GNSS Time Vulnerabilities

- GNSS is the key technology for timing dissemination, thanks to:
 - Global availability,
 - High accuracy (ns),
 - No direct cost to users.
- However, GNSS is vulnerable, due to its extremely weak signal at the end-user level on the earth surface.
- The main GNSS vulnerabilities that can cause service loss:
 - Space Weather
 - Constellation error
 - RFI
 - Jamming
 - Spoofing
 - Meaconing

Assessment of Candidate Technologies

- Due to vulnerabilities an alternative timing technology is required to complement GNSS, in order to:
 - Improve robustness and overall system
 - Maintain availability and accuracy
- Assessment Criteria included:
 - Accuracy
 - Security
 - Reliability
 - Ubiquity
 - Cost and
 - Dependency on GNSS

- Alternative Technology Assessment took place:
 - MCMF
 - LEO Satellite-Based (STL)
 - Cellular Wireless Signal LTE / 5G
 - eLORAN
 - Locata
 - LF Transmissions
 - Wireless Time Transfer via LoRaSync
 - White Rabbit
 - Synchronous Ethernet
 - IEEE 1588 PTP
 - GNSS Firewall technologies (BlueSky)
 - Oscillator Technologies (CSAC)

Use Case Selection [DJ]

Selected UCs and Timing Requirements – 5G

- UC1A 5G and Beyond Network Synchronisation TDD
 - Time sync is needed to comply with the time slot alignment
 - Required accuracy is ±1.5µs wrt UTC

- UC1B 5G and Beyond V2X high automation application
 - Time sync is needed for trajectory alignment (relative positioning)
 - Timing is relative
 - Required accuracy is 3ms
- UC1C 5G and Beyond FoF motion control
 - Communication service is provided by a wireless 5G access point
 - Timing is relative within a small indoor area, no interaction is required with public network
 - Required accuracy is ±1.0µs

Selected UCs and Timing Requirements - Other

- UC2 Power Grid PMU
 - Time sync is required for the PMUs for monitoring of power stability and fault prediction in the power grid
 - Required accuracy is ±1.0µs wrt UTC

- UC3 Financial Market High Frequency Trading (HFT)
 - Time sync is required to time stamp all stock exchanges and trading to avoid stock market fraud
 - Required accuracy is ±100µs wrt UTC
- UC4 Avionics Automation data stamping
 - Time sync is required for data time stamping
 - Required accuracy is ± 10ms wrt UTC

Innovative Hybrid Timing Solution [DJ]

Design Requirements for An Innovative Timing Solution

- The **timing requirements** for critical applications/infrastructures include:
 - Resiliency
 - High accuracy
 - Security (against external threats)
 - Ubiquity
 - **Availability**
 - **GNSS** Dependency
 - Cost effectiveness

- The **GNSS complement** should:
 - Enable resilient timing
 - **Independent** (if possible) of GNSS
 - Dissimilar to GNSS in terms of failure modes
 - Provide similar performance levels to GNSS
 - Easily integrated with GNSS at chip-level

Proposed Innovative Hybrid Timing Concept

- The Key Components of the Hybrid Timing "system-of-systems"
 - **Primary Timing Sources**
 - MCMF-GNSS
 - 5G
 - Alternative Timing Sources
 - Time Transfer via LEO (STL)
 - el oran
 - PTP
 - **GNSS Firewall**
 - Spoofing & jamming detection
 - Enhanced Oscillator Discipline Mechanism
 - CSAC

Capabilities of the Key Components of the Hybrid Timing

Multi-Constellation and Multi-Frequency (MCMF)

- MC provides robustness against single system failure
- MF provides resilience to interference and jamming (due to frequency diversity)
- Accuracy in nanosecond

Satellite Time and Location (STL)

- Global coverage with 66 Iridium satellites and traceable to UTC
- Accuracy in nanosecond delivering timing even with no GNSS signals
- 1000x stronger than GNSS signal reaching indoor and overcoming jamming issues
- Cryptographic security provides resilience to intentional spoofing

Enhanced Loran (eLoran)

- National UK coverage and traceable to UTC
- Accuracy in microsecond delivering timing even with no GNSS signals
- 3-5 million times stronger than GNSS signal. reaching indoor and overcoming jamming issues

Capabilities of the Key Components of the Hybrid Timing

Precision Time Protocol (PTP)

- Accuracy in sub-microsecond
- Local-wide area coverage

- Identify and protect the GNSS system from spoofing and jamming
- Switching to an alternative backup timing source
- Accepts an alternative source of UTC

Chip Scale Atomic (Clock CSAC)

- Reduced SWaP clock compared to the conventional atomic clocks.
- CSAC can provide an extended holdover period.
- Improve the resilience of the system during timing service outage
- CSAC could bring the accuracy and stability of atomic clocks to portable receivers with reduced SWaP

Test Results and Data Analysis [CD]

MCMF-GNSS Timing

TIE = ± 16 ns wrt UTC

MTIE = 30ns

Microsomi TimeMonius Analyses: Pa-456,1 mHz; Fu-1 0000000 Hz; "26/05/2821 15:32:50"; "06/04/2821 16:02:10"; Pa-456,1 mHz; Fu-1 0000000 Hz; "26/05/2821 15:32:50"; "06/04/2821 16:02:10"; Pa-456,1 mHz; Fu-1 0000000 Hz; "26/05/2821 15:32:50"; "06/04/2821 16:02:10"; Pa-456,1 mHz; Fu-1 0000000 Hz; "26/05/2821 15:32:50"; "06/04/2821 16:02:10"; Pa-456,1 mHz; Fu-1 0000000 Hz; "26/05/2821 15:32:50"; "06/04/2821 16:02:10"; Pa-456,1 mHz; Fu-1 0000000 Hz; "26/05/2821 15:32:50"; "06/04/2821 16:02:10"; Pa-456,1 mHz; Fu-1 0000000 Hz; "26/05/2821 15:32:50"; "06/04/2821 16:02:10"; Pa-456,1 mHz; Fu-1 0000000 Hz; "26/05/2821 15:32:50"; "06/04/2821 16:02:10"; Pa-456,1 mHz; Fu-1 0000000 Hz; "26/05/2821 15:32:50"; Gate 1 s; Ref ch2 1 0000 Hz; H/Time Data Dely; H 1-52; 531244 no 1000000

Microsconi TimeMunitur Analyses MTIE, Frant, 1900 Nr. Frant 2012, 128/05/2021 15:33:56°, 108/04/2021 16:67:10°, HF 531335: Text: 2012, A: 2210 F9 Type; B: CS60 Type; Sangles: 472507; Safe: 1 c; Ref ch2: 1.000 Hz; Ti/Time Data Only; Ti 1->2; 53131A as 10642

R4 198KHz LF Timing

TIE = ± 800 ns wrt UTC

 $MTIE = 1.6 \mu s$

Microsconi Timel-Honitor Analyses: Ph-537.7 eHz; Fo-1.0000000 Hz; "03/09/2020 12:21.12"; "07/09/2020 10:43:30"; Phase deviation in undit of time: Fn-537.7 eHz; Fo-1.0000000 Hz; "03/09/2020 12:21.12"; "07/09/2020 10:43:30"; HP 53122A; Text 2260; A: UW R4 1ppx; B: CS01 1ppx; Sampler: 182600; Gate: Lig: Ref ch2: 1.000 Hz; Ti/Time Data Daly; Ti 1->2; 53721A; as 9559

Ricessoni TimeHenter Analysis:
MTR: Fis-5 900 Hz; Fis-537.7 mHz; 103/09/2020 12:21:12"; 107/09/2020 10:42:36";
HP 53132A; Test 3260; A: LW R4 1pps; B: C501 1pps; Sumplex 102500; Gate: 1 x; Ref ch2: 1,000 Hz; TI/Time Data Only: TI 1 in 2; 53131A; ac E550

STL Timing

TIE = ± 600 ns wrt UTC

 $MTIE = 1.0 \mu s$

Microsses TimeMonitor Analyses
Phase deviation in units of time: Fa-496.1 salts; Fo-1.0000000 Hz; *25/03/2921 15:22:55*, *05/04/2525 16:07:10*,
HP 531224, Fort 3854. A STL type: 8: CS01 type: CD 120tes: Samples 47/5507; Gate: 1 s.: Ref ch2: 1.000 Hz; TI/Time Date Unity. TI 1->2: S21214, salt-1502

Microsom TameMonitor Analyses
MTIE: For-1008 NE; For-456.1 offic: "26/03/2021 15:32:56"; "06/04/2021 16:07:10";
MTIE: For-1008 NE; For-456.1 offic: "26/03/2021 15:32:56"; "06/04/2021 16:07:10";
MTIE: For-1008 NE; For-1008 NE;

PTP Timing

TIE = ± 40 ns wrt UTC

MTIE = 50ns

Hicrosomi TineMonite Analysis
Phone deviation in units of time; Fo-18.67 eHz; Fo-1.8000000 Nz; 2021/04/10 80:00:17
Time Phone: Samples: 1479
PTP Test Steve Phone; Samples: 1440; Sand'S: 2021/04/10 80:00:17; Maarchael: Input PPS; RefChes: HPS671A; Local time; UTC Other: 1:90 36.6 rose

Histories TimeRente Analyses
MTIE: For 1.000 Nr.; For 16.67 odis
Time Phane; Seeples: 1435
PTP Test Slove Phane; Samples: 1440; StarPC: 2021/94/10 00:00:17; MeasChant: Input PPS; RelChan: HFS0/TA; Local time; UTC Offset: 1.00

Performance Evaluation of Hybrid Timing against Spoofing

Stand alone MCMF

Radio 4

back-up

BlueSky Firewall

and

STL backup and BlueSky Firewall

Holdover mode with CSAC

Performance Evaluation of Hybrid Timing against Jamming

Stand alone **MCMF**

Radio 4 back-up and **BlueSky Firewall**

STL backup and **BlueSky Firewall**

Holdover mode

with

CSAC

Performance Evaluation of Hybrid Timing against constellation error

Management Transformer Analysis (1990) and 1994 and 1994 and 1994 and 1995 and 1995

TELESPAZIO

a LEONARDO and THALES company

STL backup and BlueSky Firewall

Holdover mode with CSAC

11 January 2022 – Virtual Event

5G Testing

- 5G test plans were halted
 - 5G user equipment unavailable to physically measure time transfer over 5G transmissions
- Cellular modems with time transfer capabilities
 - Some **Ublox** equipment existed with time transfer capabilities
 - However.. only 4G capable (5G on the roadmap)

Sentinel from Calnex Solutions

- Used to measure time transfer over 5G networks
- Supported standalone 5G testing only
 - Testbed integration not possible due to lack of 1pps output
- However, it did allow synthetic assessment of 5G capabilities

Testbed configuration

- Sentinel testbed included a "TimePort" device (battery powered GNSS-synchronised CSAC)
 - Designed for field test use as a portable timing reference

5G Testing

- 5G field trials were undertaken
 - in a variety of live 5G basestation locations
 - Northwest of England (supported by EE and Calnex)
 - Line-of-Sight (LoS) at varying ranges and non-LoS
- Manual calibration supported
 - Distance from basestation to test equipment
- TIE data captured for each test site location
 - MTIE data being calculated post-trial

5G Basestation	Test Plan
Site 1	 Test at 30m distance Apply 30m propagation delay compensation Outdoor direct line of sight
Site 2	 Test at 30m distance Apply 30m propagation delay compensation Outdoor direct line of sight
Site 3	 Test at 30m distance Apply 30m propagation delay compensation Outdoor direct line of sight
Site 4	 Test at 200m+ range Apply propagation delay compensation Indoor non line of sight

5G Baseline Testing Site 1 30m Direct Line of Sight

• Shows **very tight** time transfer accuracy

MTIE = 30ns relative to Basestation

5G Baseline Testing Site 2 30m Direct Line of Sight

Shows very tight time transfer accuracy

MTIE = 30ns relative to Basestation

5G Baseline Testing Site 3 400m Non Line of Sight (Indoors)

• Shows **good** time transfer accuracy

MTIE = 150ns relative to Basestation

5G Baseline Testing Site 4 30m Direct Line of Sight

• Shows **good** time transfer accuracy

MTIE = 200ns relative to Basestation

Summary Results

Overall performance was very promising

Use Case	UC Accuracy Req	Scenario	Backup Timing Source	Accuracy Criteria	Accuracy Achieved	PASS/FAIL
UC1a	±1.5μs wrt to UTC	Spoofing / Jamming /	R4	±1.5μs	±840ns	PASS
5G Network Sync		Constellation Error	CSAC	±1.5μs/12hr	±1.5μs/6hr	PASS ¹
UC1b	3ms relative	Spoofing / Jamming /	5G	±10μs	±120ns	PASS ³
5G V2X		Constellation Error	CSAC	±10μs/24hr	±7μs/24hr	PASS
UC1c	<=1μs	FC LoC	R4	±1μs	±800ns	PASS
5G FoF		5G LoS	Iridium	±1μs	±500ns	PASS ³
UC2	± 1μs 2σ wrt UTC: typical	Spoofing / Jamming /	R4	±1μs	±840ns	PASS
Power Grid	± 100ns 2σ wrt UTC: extended	Constellation Error	Iridium	±1μs	±540ns	PASS
UC3	± 100μs wrt UTC: typical	Spoofing / Jamming /	R4	±10μs	±840ns	PASS
Financial	± 1µs wrt UTC: extended	Constellation Error	Iridium	±10μs	±540ns	PASS
UC4	40 1170	Spoofing / Jamming /	Iridium	±100μs	±540ns	PASS
Avionics	10ms wrt UTC	Constellation Error	CSAC	±100μs/24hr	±7μs/24hr	PASS

- 1. PASS criteria only achieved with the use of IEEE PTP V2 as the selected transmission protocol. The use of LoRaSync pushed the total phase error beyond the PASS criteria of ±1.5µs
- 2. Use of CSAC for holdover is only suitable for up to 6hrs before PASS criteria can no longer be met
- 3. Synthetic test verdict based on Steady State 5G test results

Demonstrator SWOT and TRL Analysis [DJ]

Strength and Weakness Summary

Subject	Strength	Weakness		
Performance	 System less vulnerable to interference, jamming and spoofing Supports a range of flexible design options and the system can be configured for specific applications Supports indoor scenario application, when the system is backed-up by an STL or LF timing source Wide ranging accuracy performance, from ms level to sub-µs level. Global or wide area coverage through wireless time transfer (satellite-based or terrestrial-based). Improved resilience and threat awareness via "Firewall" technologies. Provides Enhanced holdover via CSAC Supports security features (e.g. authentication and encryption) via some alternative timing technologies such as STL 	Backup Ubiquity, in general, not on par with GNSS (excl. indoor scenario)		
Feasibility	 backup timing sources either relatively mature or have a clear roadmap for development (e.g. 5G) 	 Additional HW costs Service subscription could be required 		

Opportunities and Threats

Subject	Opportunities	Threats
Adoption	 The impact of GNSS outage due to GNSS vulnerability increases the need for resilient PNT The criticality of timing to national infrastructure such as communications network, power grid and financial. 	Potentially complicated standardisation and regulation instead of voluntary choice, due to upgrade of the UE.
Technology development	 Supports higher accuracy performance by evolving existing technologies System cost reduction to promote adoption, e.g. highly integrated HW/SW solution (such as existing GPS/ eLoran maritime receiver) Support software-level timing hybrid 	The evolution of 5G has the potential to render some KPI requirements covered - without the need for additional system elements for some UCs

Candidate Technology TRL Summary

Technology	Description	TRL
GNSS	A space-based radio navigation system, capable of providing accurate positioning, navigation and timing (PNT). All four constellations in GNSS are in FOC providing free open service for civil users.	9
5G	A wireless technology with <u>timing distribution</u> capability. The 5G standards for accurate reference time delivery are still developing and evolving.	7
STL	A commercial system that uses a series of short data messages on the Iridium constellation of Low Earth Orbit (LEO) satellites. The system provides a commercial service to users around the globe.	9
eLoran	A low-frequency, long range Terrestrial Radio navigation System, capable of providing positioning, navigation and timing (PNT). A prototype has been demonstrated in an operational environment successfully in UK.	7
PTP	A timing standard used to synchronize clocks throughout a computer network on a local area network. This service is available commercially.	9
CSAC	A reduced SWaP clock, as compared to the conventional atomic clocks. CSAC is able to provide an extended holdover period, which can help to improve the resilience of a system during timing service outage. CSAC is the world's first commercially available chip scale atomic clock from Microsemi.	9
BlueSky	A GNSS firewall, which identifies and protects GNSS systems from spoofing and jamming threats. BlueSky is commercially available from Microsemi.	9

Gap Analysis, Development Roadmap & TTM [DJ]

Gap Analysis

Testing with 5G in lab is <u>not</u> considered possible at this stage:

- No clear roadmap for the release of 5G UE products
- Theoretically UEs installed in a smart grid could get a common time reference from the Rel-16 5G SIB9
 - SIB is not yet being transmitted in live 5G networks
 - The granularity of the time information in the SIBs is currently limited to ~10 ms
 - UC applications chosen for this study require μs or ns level

eLoran has not been included in the test architecture:

- UK transmitter at Anthorn is not currently synchronised to UTC due to a failure the atomic clock ensemble
 - R4 198KHz LF timing service was adopted as an alternative
- R adio4 performance provided accurate time synchronisation for most UC requirements within this project

Development Roadmap & TTM

The candidate technology roadmap can be summarised as:

- Currently there are three core constellation frequencies plus two frequencies from GPS
- Soon there will be two more LEObased services with IOC available, in parallel with the Iridium constellation
- eLoran is at Initial Operating Capability (IOC) in the UK and the Far East, with no clear roadmap for wider international deployment
- Initial 5G services for TSN, PTP and Resilient Timing Synchronisation are expected by 2023, 2024 and 2025 respectively

avTiming Time		Case study & Testhed Deme,				Forther Development			Com tellar	merr- ution			
		3020 2021		2022 2023		2024 2025		2026 202		2027 2028	3029 2		
St-Timbe	Stand ands Deve log-	Helease 16 Time Sytic for TSN		Release 17 PTP Tana Sym	Rolesse 18 Rovdicot Tamona BOC Time 5ync for 78N	IOC PTP Time Syna	IOC Resiline Turing			further de	evelopment		
988	GPS	Lac #	0% FaC	>	L1 FoC L1C In development L2C FoC			FoC		LIC Fe			
	SEVANOTES	LIC SOURSOL LIC FoC											
	Calles	EI 90% FeC ES 90% FeC ES 90% FeC		E1 FeC E3 FeC E4 FeC									
	Bellva	B1 90% FoC B2 80% FoC B3 80% FoC	}		81 82 83	FoC FoC							
60	histori DarWell Speek	74 5V lamid Global Coverage											

Innovative Hybrid Timing Concept – Steps to Commercialisation

- Currently, the solution designed during the project is TRL 4/5
 - The solution is validated but not fully demonstrable
- ~2 year development plan
 - Prototype demonstration in operational environment; and
 - System qualification in an operational environment
 - However...
 - start point depends on the IOC and availability of COTS specifically for the target 5G technology (due from 2024)
- Finally, the solution would move forward through standardisation and commercialisation phase
 - Anticipated availability as a commercial product by 2027

TECHNOLOGY READINESS LEVEL (TRL)

9	ACTUAL SYSTEM PROVEN IN OPERATIONAL ENVIRONMENT
8	SYSTEM COMPLETE AND QUALIFIED
7	SYSTEM PROTOTYPE DEMONSTRATION IN OPERATIONAL ENVIRONMENT
6	TECHNOLOGY DEMONSTRATED IN RELEVANT ENVIRONMENT
5	TECHNOLOGY VALIDATED IN RELEVANT ENVIRONMENT
4	TECHNOLOGY VALIDATED IN LAB
3	EXPERIMENTAL PROOF OF CONCEPT
2	TECHNOLOGY CONCEPT FORMULATED
1	BASIC PRINCIPLES OBSERVED

Potential Upgrade Costs

	Technology								
UC	MCMF	5G	BlueSky	CSAC	STL	РТР	eLoran	CAPEX	OPEX €
1a and 2	✓		✓	✓		✓	✓	15,250	1,000
3	✓		✓	✓	✓	✓		12,650	5,600
4	✓		✓	✓	✓			9,650	4,600
1b and 1c	✓	✓	✓	✓				8,800	300
Basic	✓							400,00	0,00

Study Conclusions [MB]

And so...

- CNI & other applications require accurate, secure and reliable time inter alia:
 - 5G/LTE
 - Avionics
 - Power Grids
 - Secure Communications
 - Financial transactions
- GNSS has done this for the last few decades with sub-ns sync and traceability to UTC (plus
 it's free at the point of use!)
 - But... GNSS is vulnerable
 - interference, spoofing, built environment, vegetation, indoors, etc.
- We have proposed an Innovative Hybrid Timing System

This Innovative Hybrid Timing Solution Provides:

- Application support to various Use Cases
 - Flexibility to choose alternative timing sources, adaptive to the requirement/application
- A wide range of accuracy
 - From ms level to sub-us level
 - From different alternative timing sources
- Improved holdover performance
- Improved resiliency less vulnerable to interference, jamming or spoofing (vs. GNSS)
- Global coverage or wide area (e.g. 1000 km) coverage
 - Through wireless time transfer (satellite-based or terrestrial-based)
- Ubiquity
 - Supporting indoor scenarios (by STL and LF signal)
- Support to security features such as authentication and encryption
 - Using alternative timing technologies (such as STL)

Recommendations

- Additional 5G study
- The definition of an integrity standard for timing
- A workshop might also be called to allow for stakeholder evaluation
- Assessment of potential issues of implementation and operation

Open Q&A Session

Contacts

Louise Mercy

Programme Manager - Telespazio UK

Louise.mercy@Telespazio.com

Dana Jamal

Navigation Systems Engineer - Telespazio UK

Dana.jamal@Telespazio.com

Calum Dalmeny

Chief Technology Officer – Chronos Technology Limited

Calum.Dalmeny@chronos.co.uk

Martin Bransby

Head of Navigation - Telespazio UK

Martin.bransby@Telespazio.com

telespazio.com

THANK **YOU** FOR YOUR ATTENTION

telespazio.com

