Latest Evolution of RAIM and A-RAIM Prediction Systems
Topics

• Rationale
• Requirements
• Objectives
• Results
• Achievements
SPACEKEYS Rationale

As the GPS satellites themselves have evolved over the years, so have the systems that allow operators to take the benefit of satellite navigation. SPACEKEYS presents the ultimate evolution of GNSS RAIM prediction solution for aviation. It provides for worldwide RAIM predictions for all aircraft types and for all navigation and surveillance specifications. SPACEKEYS is a project partly funded by European Space Agency (ESA) under the NAVISP programme (NAVISP EL2-007).

- Airlines
- CAA/ANSPs
- Flight Planning
- Flight Following
- Weather
- Business Jets
- General Aviation

Create competition and add multi-constellation
SPACEKEYS NAVISP Project Context

• Phase 1 - All Worldwide traditional RAIM prediction requirements met, including ADS-B.
• Phase 2 – Addition of multi-GNSS (Galileo) and A-RAIM as an R&D project. Built on a solid Phase 1.
• Major emphasis on requirements capture from users (Airlines, Integration Companies).
• Agile software development process, development, verification and validation are significantly overlapping. Quick iterations minimize the refactoring efforts at the end of the development task.
• Rigorous Validation and Verification with ESA unrivalled expertise in subject matter and external Quality Assurance review.
SPACEKEYS NAVISP Phase 1 Project Activities

- Phase 1 - All Worldwide traditional RAIM prediction requirements met, including ADS-B.
 - Requirements gathering.
 - Major problem for Flight Planning re RAIM hole detection.
 - Partly user-driven
 - User Workshops held through 2018.
 - User Group Meeting 1-3 October 2019, Vienna.
 - System design.
 - Implementation.
 - Validation/Verification. FAA Volpe SAPT, Independent MATLAB implementation.
 - Deployment.
 - Maintenance.
 - Already significant user base.
 - Number of bespoke ‘per-user’ adaptations made.
RAIM Requirements (standards)

Large variety of receiver and operational standards:

- RTCA Minimum Operational Performance Standards (MOPS).
- US: FAA ACs, TSOs, orders and notifications.
- Europe: EASA’s AMCs.
- JAA’s TGLs.
- ICAO.
- ... other third-country documents.

- In total over 50 standardization documents were analyzed...
- ... but none of them standardizes the RAIM algorithm as such.
RAIM Requirements (GNSS Receivers)

The RAIM solution performs predictions for all currently known receiver types in commercial aviation. This includes receivers compliant with TSO-C129, TSO-C196 and TSO-C145/146. The system is Future Ready For Multi-Constellation Receivers and Advanced Horizontal RAIM.

The following GNSS receiver parameters are supported:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Options</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
<td>FD or FDE</td>
<td></td>
</tr>
<tr>
<td>Barometric Aiding</td>
<td>ON, OFF or ON only on Failure</td>
<td>The option „On only on Failure“ provides the user the possibility to apply BA only in case the RAIM prediction resulted in an outage excluding BA. This is only available in the Spacekeys RAIM prediction solution.</td>
</tr>
<tr>
<td>Selective Availability</td>
<td>ON or OFF</td>
<td></td>
</tr>
<tr>
<td>Mask Angle</td>
<td>-25° to 30°</td>
<td></td>
</tr>
<tr>
<td>HAL Multiplier</td>
<td>Any certified value</td>
<td>Some aircraft are certified to apply a horizontal alert limit bias during RAIM predictions.</td>
</tr>
</tbody>
</table>
RAIM Requirements (Navigation)

The RAIM solution performs predictions in compliance with the following navigation specifications. Terrain screening is performed as required for RNP AR predictions.

<table>
<thead>
<tr>
<th>FAA (U.S.A.)</th>
<th>RNAV 10 RNP 10</th>
<th>RNAV 5 Basic-RNAV</th>
<th>RNAV 2 US RNAV Type A</th>
<th>RNAV 1 Precision-RNAV US RNAV Type B</th>
<th>RNP 4</th>
<th>RNP1</th>
<th>RNP Approach</th>
<th>RNP AR Approach</th>
<th>MNPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC 20-12</td>
<td>AC 90-105A</td>
<td>AC 90-96A</td>
<td>AC90-100A</td>
<td>AC 90-100A</td>
<td>AC 90-105A</td>
<td>AC 90-105A</td>
<td>AC 90-101A/101A & 102 (ILNAV, LNAV/VNAV)</td>
<td>AC 91 (RNP AR)</td>
<td>NB110.60</td>
</tr>
<tr>
<td>CASA (Australia)</td>
<td>AC 91U-2(0)</td>
<td>CAAP B-RNAV-1</td>
<td>AC 91U-II-3-B</td>
<td>AC 91U-II-3-B</td>
<td>AC 91U-II-3(0)</td>
<td>AC 91U-II-C-3(0)</td>
<td>AC 91 (RNP AR)</td>
<td>AC 91-U-II-C-5 & 101 (ILNAV/VNAV)</td>
<td>AC 91-U-II-C-5 & 101 (RNP AR)</td>
</tr>
<tr>
<td>SVRSOP (Latin America)</td>
<td>AC 91-001</td>
<td>AC 91-002</td>
<td>AC 91-003</td>
<td>AC 91-004</td>
<td>AC 91-006</td>
<td>AC 91-006</td>
<td>AC 91-U-II-C-5 & 101 (ILNAV/VNAV)</td>
<td>AC 91-U-II-C-5 & 101 (RNP AR)</td>
<td>AC 91-U-II-C-5 & 101 (RNP AR)</td>
</tr>
<tr>
<td>Transport Canada</td>
<td>AC 700-015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPACEKEYS © 2019. All rights reserved.
Requirements (Surveillance)

The RAIM solution performs predictions in compliance with the FAA ADS-B 2020 specification AC90-114A Change 1. As other Worldwide surveillance requirements are developed the system will ensure all requirements are complied with.

Advisory Circular

1. PURPOSE. The intent of this advisory circular (AC) is to facilitate operations using Automatic Dependent Surveillance-Broadcast (ADS-B) technology in compliance with Title 14 of the Code of Federal Regulations (14 CFR) part 91, §§ 91.225 and 91.227, which are required after January 1, 2020. The appendices provide guidance for the authorization of additional ADS-B Out and ADS-B In operations and their associated aircraft qualification and maintenance requirements.

2. PRINCIPAL CHANGES. This change incorporates new ADS-B guidance related to a technical amendment to § 91.225; equipping type certificated (TC) aircraft, light-sport aircraft (LSA), and experimental aircraft; and preflight requirements in U.S.-designated airspace. This change also modifies guidance for Cockpit Display of Traffic Information (CDTI) Assisted Visual Separation (CAVS).
SPACEKEYS Objectives

- All Worldwide prediction requirements met, including ADS-B.
- Modern System To System APIs.
- Sophisticated Web User Interface – including flight plan cut/paste.
- Daily Reports – Users Customisable.
System Integration / API

Spacekeys RAIM supports real time integration with third party systems such as flight planning and flight following systems. Both SOAP and REST APIs are provided for system developers to develop integrated solutions. The APIs are load and stress tested and deliver outstanding performance.

The following integration options are possible:

- API to request a location RAIM prediction for any airport with specific RNP levels (departure, destination, destination alternates,...).
- API to request a trajectory RAIM prediction for any trajectory of a flight (main, alternates,...).
Web-Based User Interface

A full suite of web tools to allow the user to perform RAIM predictions:

- Manual ad-hoc operations including ad-hoc location predictions or route predictions.
- ICAO flightplan copy/paste.
- Supported by an interactive map.
- Storing of ad-hoc predictions for future re-usage.
- Configure automated reports.
 - Providing the capability to set specific schedule parameters.
- Configure aircraft types, aircraft registrations and receivers.
- XML Flight Plan Import (e.g.: ARINC 633).
- Full Worldwide area map display (with navigational data overlay).
- Activity Log / RAIM Prediction History.
- Service Status Monitor.

\[2\] Utilizing the unique FLIGHTKEYS 5D dynamic aircraft parameter inheritance system
SPACEKEYS Tools

• Constellation Service Status.
• Ad-hoc Predictions.
• Scheduled Predictions.
• Receiver/Aircraft Settings.
 Constellation Service Status

Service Status

Current Almanac
GPS 11701
GPS 104
Number of Satellites (current/total) 3/24

Current NANUs

<table>
<thead>
<tr>
<th>Number</th>
<th>SVN</th>
<th>PRN</th>
<th>Start</th>
<th>Stop</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019142</td>
<td>65</td>
<td>15</td>
<td>2019-08-07T19:25:00Z</td>
<td>2019-09-06T07:25:00Z</td>
<td>FCSTOV</td>
</tr>
<tr>
<td>2019134</td>
<td>41</td>
<td>2</td>
<td>2019-08-27T14:45:00Z</td>
<td>2019-08-30T02:45:00Z</td>
<td>FCSTOV</td>
</tr>
</tbody>
</table>

This RAM prediction system currently performs RAM predictions based on GPS enhancement only.
Ad-hoc Predictions - Airport

AD HOC RAIM PREDICTION NEXT 12H FROM 2019-08-28T14:12:59.650Z

- **EGLL RNP: RNP-AR (0.25 NM): 757/717_only** acceptable except for the FLWG periods:

- **EGLL RNP Approach (0.3 NM): 757/717_only** acceptable except for the FLWG periods:

- **KSJC RNP: RNP-AR (0.25 NM): 757/717_only** acceptable except for the FLWG periods:

REPORT DETAILS
REQUESTED: 2019-08-28T14:12:59.972Z
ALMINAC: 20 903808
NANIs:
Ad-hoc Predictions - Route

SPACEKEYS © 2019. All rights reserved.
Ad-hoc Predictions - Area
Receiver/Aircraft Settings

Available Receivers:

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Type</th>
<th>Algorithm</th>
<th>Selective Availability</th>
<th>Mask Angle</th>
<th>RNP Multiplier</th>
<th>Barometric Aiding</th>
<th>Barometric Aiding Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>737</td>
<td>Type 129, Algorithm FDE</td>
<td>Selective Availability: Unaware</td>
<td>Mask Angle: 30</td>
<td>RNP Multiplier: 1</td>
<td>Barometric Aiding: no</td>
<td>Barometric Aiding Policy: on</td>
<td></td>
</tr>
<tr>
<td>737C300</td>
<td>Type 129, Algorithm FDE</td>
<td>Selective Availability: Unaware</td>
<td>Mask Angle: 5</td>
<td>RNP Multiplier: 1</td>
<td>Barometric Aiding: no</td>
<td>Barometric Aiding Policy: on</td>
<td></td>
</tr>
<tr>
<td>737MAX</td>
<td>Type 145146, Algorithm FDE</td>
<td>Selective Availability: Aware</td>
<td>Mask Angle: 30</td>
<td>RNP Multiplier: 1</td>
<td>Barometric Aiding: yes</td>
<td>Barometric Aiding Policy: on</td>
<td></td>
</tr>
<tr>
<td>787</td>
<td>Type 129, Algorithm FDE</td>
<td>Selective Availability: Aware</td>
<td>Mask Angle: 5</td>
<td>RNP Multiplier: 1</td>
<td>Barometric Aiding: no</td>
<td>Barometric Aiding Policy: on</td>
<td></td>
</tr>
<tr>
<td>A319A320</td>
<td>Type C129</td>
<td>Algorithm FDE</td>
<td>Selective Availability: Aware</td>
<td>Mask Angle: 5</td>
<td>RNP Multiplier: 1</td>
<td>Barometric Aiding: no</td>
<td>Barometric Aiding Policy: on</td>
</tr>
<tr>
<td>B737.30C</td>
<td>Type C129</td>
<td>Algorithm FDE</td>
<td>Selective Availability: Aware</td>
<td>Mask Angle: 5</td>
<td>RNP Multiplier: 1.8</td>
<td>Barometric Aiding: no</td>
<td>Barometric Aiding Policy: on</td>
</tr>
<tr>
<td>B737NG</td>
<td>Type C129</td>
<td>Algorithm FDE</td>
<td>Selective Availability: Aware</td>
<td>Mask Angle: 5</td>
<td>RNP Multiplier: 1.8</td>
<td>Barometric Aiding: no</td>
<td>Barometric Aiding Policy: on</td>
</tr>
<tr>
<td>B7376747</td>
<td>Type C129</td>
<td>Algorithm FDE</td>
<td>Selective Availability: Aware</td>
<td>Mask Angle: 5</td>
<td>RNP Multiplier: 1.8</td>
<td>Barometric Aiding: no</td>
<td>Barometric Aiding Policy: on</td>
</tr>
<tr>
<td>B777E787</td>
<td>Type C129</td>
<td>Algorithm FDE</td>
<td>Selective Availability: Aware</td>
<td>Mask Angle: 5</td>
<td>RNP Multiplier: 1.8</td>
<td>Barometric Aiding: no</td>
<td>Barometric Aiding Policy: on</td>
</tr>
</tbody>
</table>

Receiver Details:

- **Receiver Name:** 737MAX
- **Type:** 145/146
- **Selective Availability:** Aware
- **RNP Multiplier:** 1
- **Barometric Aiding:** Yes
- **Barometric Aiding Policy:** Always Considered

[Add new receiver]
Architecture and SLA

The system architecture has been created using latest technologies with the main focus on stability, scalability and performance. Each component is resilient and deployed over multiple physical locations. Deployment in a commercial cloud provider’s infrastructure (AWS, Azure,...) is supported out of the box.

Spacekeys guarantees the following Standard Service Levels:
• 99.95% system uptime.
• New Almanac Processing within 2 minutes.
• New NANU processing within 60 minutes.
• Average 500 requests per aircraft registration and day (fair use).
• 24/7 support.
Achievements – RAIM/ADS-B

• NAVISP
 • Phase 1: RAIM - Design, implementation and validation/verification.
 • Phase 2: A-RAIM - Galileo and A-RAIM experimental test bed.

• SPACEKEYS Success
 • EUROCONTROL Augur. A cut down functional system to meet EUROCONTROL requirements. Created from Phase 1 success.
 • Two major Worldwide flight planning companies direct API integration.
 • Integration with two Flight Following systems.
 • SPACEKEYS sit on US Congressional ADS-B review committee.

• A case study – Europe on October 16th 2018........a major aviation GPS event never seen in 20 years.
 • One satellite out for maintenance.
 • Bad geometry – GPS outage for approach over most of Europe.
SPACEKEYS NAVISP Phase 2 Project Activities

• Phase 2 – Addition of multi-GNSS (Galileo) and A-RAIM as an R&D project. Built on a solid Phase 1.

 • Requirements gathering (literature study).
 • System design.
 • Special care to be taken as phase 1 system went live during phase 2.
 • Implementation.
 • Algorithmic testing.
 • Integration.
 • Integration testing.
THANK YOU!

SPACEKEYS ©2020

john@spacekeys.aero