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PRISM Objective: RIS Potential for Localization and Mapping

• Operation in FR1
• Performance in real-world setups
• Performance using 5G signals
• Feasibility of testbeds using COTS
• Implementation of algorithms exploiting RIS-aided ranging and 

angle measurements
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PRISM Testbed Overview

▪Core COTS Components
▪Calibration Procedures
▪ 5G PRS Signal as Test Waveform
▪ Test Environments
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Testbed 
components
❖ Reconfigurable Intelligent Surface

❖ USRP X300 (Tx side)
• Wide instantaneous bandwidth to support 5G NR-

compliant signals and high-resolution ranging

❖ USRP N310 (Rx side)
• Multiple, phase-coherent channels in a single device, 

essential for Angle of Arrival (AoA) estimation algorithms

❖ LNAs (Rx side)
• To improve receiver sensitivity

❖ Directive flat panel antennas (ITELITE)
• Approx. 20° HPBW, suitable for focused transmission and 

reception

❖ Omni antennas
• Single-element antenna
• Three-element Uniform Linear Array 

❖ Flexibility of testbed

RIS
RX-omni 

TX 

Photo: PRISM setup at ECE Dept., UPAT
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Phase Offset and Calibration 
of USRP Channels

Challenge: Inherent phase mismatches between USRP RF 
channels, which degrade the accuracy of AoA algorithms 
such as MUSIC

Two-Stage Calibration Strategy:

A. Offline Calibration (for channels with a shared LO)
• A common pilot signal is injected into the 

channels with the shared LO.
• A static phase offset is measured and stored for 

a set of Tx/Rx gain values.

B. Online Calibration (for channels with different LOs)
• Independent LOs can drift over time, requiring 

real-time correction.
• A 2-to-1 splitter is used to distribute a common 

reference signal to one channel of each LO 
group.

Photos: PRISM calibration setup at VLSILAB, ECE Dept., UPAT
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5G PRS Signal as 
Test Waveform

• Used for downlink positioning

• 31-bit Gold sequence

• Comb type structure
• Empty subcarriers that allow multi-transmission

• Different numerologies supporting a variety of SCS, and 
different BWs

• Up to 12 OFDM symbols per slot can contain PRS

Selected PRS parameters:
• Numerology: μ = 2
• Subcarrier Spacing: 60 kHz
• Comb Size: KComb

PRS = 2
• Bandwidth: 37.44 MHz
• Extended Cyclic Prefix => 12 OFDM Symbols per slot⇒
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Test Environments
• Anechoic chamber: reflection-free environment, limited space

• Outdoor environment: real-world conditions, low multipath

• Indoor environment: most challenging scenario, dense multipath

Photo: PRISM anechoic chamber setup at University of West Attica Photo: PRISM indoor setup at ECE Dept., UPAT Photo: PRISM outdoor setup at VLSILAB, ECE Dept., UPAT
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PRISM Methodology and Outcome

▪ PRISM Motivational Scenario and Algorithmic Approach

▪ Core Contributions of the PRISM project
▪ Beam Sweeping using RIS
▪ RIS-Aided Angle of Arrival Estimation
▪ RIS-Aided Ranging 
▪ RIS-Aided Mapping

▪ Conclusions
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RIS-Aided Positioning: 
A Motivational Scenario

✓ Uses the minimum possible number of anchor points

✓ Requires the implementation of both ranging and AoA/AoD estimation 

✓ Does not require “common sense of time” reference in ToA estimation by 
exploiting the differential arrival of the direct and RIS-reflected paths
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Overview of the 
Algorithmic Approach for 
RIS-Aided Localization 

and Mapping

• Localization
• Beam sweeping protocol (codebook-based RIS beamforming)
• AoA estimation algorithms (e.g. MUSIC)
• ToA estimation/Ranging algorithms

• Mapping
• 1 scattering point is introduced in the considered setup
• Prior knowledge of UE’s position
• Beamform towards the scattering point (codebook-based RIS beamforming)
• Super resolution algorithms (e.g. MUSIC) or heatmap-based estimates are exploited 

for NLoS paths’ detection.
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RIS Characterization

RIS prototype:

• RIS working frequency: 3.5 GHz

• 32 × 32 = 1024 elements

• 1-bit voltage control, varactor-based

• dual-polarized

• scanning range from –65 to 65 degrees

• 10 ms configuration update time

• Raspberry Pi (RPI) controller for RIS configuration
• Supports communication via TCP/IP over wireless or 

wired (Ethernet) connection

✓ Anechoic chamber, specular reflection
✓ Around the RIS working frequency, the theoretical phase shift is 

expected to be 180°
✓ VNA Rohde & Schwarz ZVA24

Photo: PRISM anechoic chamber setup at University of West Attica
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RIS Configuration Optimization for Beam 
Steering (Codebook Generation)

• Objective: Steer the main lobe of the RIS-reflected signal toward a 
desired Angle of Departure (AoD).

• Challenge: The lack of accurate models to capture the RIS radiation 
pattern prevents model-based beamforming design.

• Approach: A data-driven greedy algorithm is employed, where RIS 
phase configurations are iteratively adjusted and evaluated based on 
received power measurements.

• Execution: In each iteration, columns or rows of RIS elements are 
modified; if the change increases the received power, it is retained, 
otherwise it is discarded.

• Advantage: The algorithm adapts in real time to the propagation 
environment, enabling practical and efficient codebook generation 
without requiring prior calibration or channel models.
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1-bit RIS
• Blue         →       0 state
• Yellow     →       1 state



Measured Radiation Patterns of 
RIS (Codebook)

Frequency selectivity of RIS Radiation Patterns:
• Angle direction of the main lobe is preserved 

across the frequency range
• Variations are observed in the side lobes

✓ All setups have been evaluated (indoor, outdoor, anechoic 
chamber)

✓ Maximum received signal power is measured at the receiver 
position aligned with the intended beam steering direction

Outdoor measurements 39



Anechoic Chamber: 
AoA Estimation via 

Beam Sweeping

• Reflection-free environment, limited space
• Expected peak: RIS-Rx azimuth angle
• Measured peak: angle for which the strongest received 

signal was observed
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Outdoor Setup: AoA
Estimation via Beam 

Sweeping

• Limited multipath

• Expected peak: RIS-Rx azimuth angle

• Measured peak: angle for which the strongest received signal was 
observed
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Indoor Setup: AoA
Estimation via Beam 

Sweeping

• Strong multipath

• Expected peak: RIS-
Rx azimuth angle

• Measured peak: 
angle for which the 
strongest received 
signal was observed
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RIS-Aided Angle of 
Arrival Estimation

General Idea for RIS-Assisted Positioning
• RIS helps super-resolution algorithms accurately calculate the AoA of the 

LoS path by strengthening it over other paths.
• Seek a RIS configuration that beamforms towards the LoS path.

• Design an offline codebook of RIS configurations.
• The UE position is not known to directly beamform to it using the RIS!

• Select the RIS configuration that maximizes UE’s received power before 
estimating AoA.

Ray Tracing Simulation Results
• Beam sweeping struggles in 1-bit RIS systems under strong multipath conditions, since side lobe effects activate 

unintended NLoS paths.
• MUSIC achieves robust and precise positioning, comparable to the scenario where a continuous RIS is employed.
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RIS-Aided AoA
Experimental 

Results

Setup1: Anechoic Chamber 

• Tx at −15°, RX at 2.5°

• All nodes are placed at the same height

• 2×7=14 RIS configurations (reflecting at −5° to 10° with step of 2.5°)

• 2 RIS configurations for each position, corresponding to 2 iterations of 
greedy algorithm

• Three-antenna ULA is directed towards the RIS center
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RIS-Aided AoA
Experimental 

Results

Setup2: Indoor Environment 

• Tx at −15°

• 4 RIS configurations (reflecting at 0° to 45° with step of 15°)

• Three-antenna ULA is directed towards the RIS center

Photos: PRISM indoor setups ECE Dept., UPAT
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RIS-Aided AoA
Experimental Results 

and Measurements

Setup2: Indoor Environment 

• Tx at −15°

• 4 RIS configurations (reflecting at 0° - 45° with step of 15°)

• Three-antenna ULA is directed towards the RIS center

Results of the RIS-aided AoA estimation for various Tx signals, and with different Tx/Rx gains.

Conclusion: Even in challenging indoor environments, an 
average angle estimation error of ≈ 5 ° can be achieved.
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RIS-Aided Ranging 
Experimental 

Setup

Goal: Estimate the TDoA between two dominant paths
• Cross-correlation between the RX and the known TX signal
• Error depends on the sampling period
• Fs = 153.6 MHz

Photo: PRISM indoor setup ECE Dept., UPAT

Photo: PRISM setup at VLSILAB, ECE Dept., UPAT
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RIS-Aided Ranging Experimental Results

• Variations due to pathloss in 20m case

• RIS more accurate and enhanced 
beamforming is required.

Ranging Dif. Estimation
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10 m cable length dif. 20 m cable length dif.

• Length Distance Estimation is 9.72 m
• Using Interpolation Parabola: 9.91 m

• Length Distance Estimation is 11.33 m
• Using Interpolation Parabola: 11.91 m

• Length Distance Estimation is 19.44 m
• Using Interpolation Parabola: 19.67 m

• Length Distance Estimation is 19.43 m
• Using Interpolation Parabola: 19.53 m



RIS-Aided 
Mapping: 

Methodology

Objective:
• Localize a passive scatterer by exploiting RIS-induced RF

fingerprints

Setup:
• Indoor environment with ITELITE directional antennas for Tx/Rx
• Tx fixed at azimuth –15° relative to RIS
• Scatterer at –30° (Tx–RIS path), +30° (RIS–Rx path), placed 2m

away from the RIS

Measurement protocol:
• Baseline heatmap created by moving RX over a 2D grid and

recording power for a set of RIS configurations (both random and
optimized configurations).

• Scatterer introduced; process repeated to generate a second
heatmap.

• Differential analysis of the two maps reveals scatterer position
(angle & distance).
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RIS-Aided Mapping: 
Experimental Results

• Scatterer at –30° (Tx–RIS path): 
Entire map affected → obstructions 
on main illumination path detected 
regardless of RX position

• Scatterer at +30° (RIS–Rx path):
Consistent changes along 30° RX 
column → Correct azimuth 
identification and coarse distance 
estimation of the scatterer (<3 m)
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RIS-Aided 
Mapping

Objective: Specifying the Location of Scattering Points
• NLoS paths of a single reflection point are resolved.
• Since ULA-based UEs are used, only NLoS paths without 

elevation can be resolved.

Algorithmic Solution
• Estimate the position of the UE (LoS-path’s parameters).
• Compute the RIS-to-UE LoS channel.
• Generate the estimated LoS-term part of the RX signal.
• Subtract the LoS term from the RX signal.
• Execute Beam Scanning.
• When RIS targets at an NLoS path, the angle found by MUSIC is 

that of scatterer-to-UE.
• The location of the scattering point is specified as the 

intersection of two straight lines.

The RIS-enabled approach
achieves an average scattering
point estimation error of 0.21 m
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Conclusions

52

• RIS Characterization and Experimental Setups
• Identification of beamforming limitations overlooked in theoretical studies
• Field trials in diverse environments (indoor, outdoor, anechoic chamber)
• Development of model-free methods for localization & mapping

• Angle Estimation
• Proposed super resolution estimation combined with RIS beam sweeping proven effective
• 1° average error in simulations; 4°- 10° average error in indoor experimental setups
• Discrepancies between simulations and experiments due to actual hardware behavior, 

radiation pattern and channel modeling

• Range Estimation and Mapping
• Fingerprinting methods proven valuable in experimental setups
• Proposed RIS-based techniques show potential in simulations



Demo
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